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The retarded potential, a solution of the non-homogeneous wave equation, is a subject of particular interest in many physics and engineering
applications. Examples of such applications may be the problem of solving the wave equation involved in the emission and reception of a
signal in a synthetic aperture radar (SAR), scattering and backscattering, and general electrodynamics for media free of magnetic charges.
However, the construction of this potential solution is based on the theory of distributions, a topic that requires special care and time to be
understood with mathematical rigor. Thus, the goal of this study is to provide an introductory analysis, with a medium level of formalism,

on the construction of this potential solution and the handling of Green functions represented by sequences of well-behaved approximating
functions.
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1. Introduction going to use the artifice of working with sequences of well-
behaved approximating functions [28], which permit us to
Potential theory can be simply understood as the art ofa|k about distributions concisely and without too much com-
solving a linear distributional non-homogeneous differentialy|exity. However, we hope to motivate the reader in the study
equation through the Green functions [1-3]. In the contexbt distributions through one of their most important appli-
of this study, our interest resides in the construction of an:ations: the standard solution of the non-homogeneous wave
integral solution that derives from the divergence Gauss thegquation, also known as the retarded potential. To understand
orem, certain Green identities, and the handling of the Greeghe construction of this integral solution, we first need to ex-
functions. In the construction of this potential solution we pose the main problem involved with the non-homogeneous
also find other results of great importance, such as the intqyave equation. Thus, in order to establish the context of such
gral theorem of Helmholtz and Kirchhoff, which is the main 4 problem, we start in Sec. 2 with a typical deduction of the
result that Supports the scalar diffraction theory in OptiCS [4].non_homogeneous wave equation from the Maxwe” equa_
However, Green functions are not properly functions in thetjons. Motivated in the perspective of SAR theory, in the sub-
usual sense, since they are formally definediasibutions  sequent sections, we provide some descriptive guidelines for
Distributional theory, Green functions, and the use of Greeronstructing the potential solution of this non-homogeneous
identities have been successfully implemented in many theqyave equation. The potential solution is supported by the di-
retical and applied works.g, SAR theory [5-7], scattering vergence Gauss theorem and the Green identities, described
and wave propagation [8-12], wave diffraction and electroin Sec. 3. Of course, the definition of Green functions is also
dynamics [13-16], phase unwrapping [17-20], etc. explained in Sec. 4, where we discuss about certain incon-
The concept of distribution is not easy to explain and ingryities when working with Green functions, found in certain
most of the references where distributions are mentionedeferences (for example [21]). These incongruities refer to
such as basic courses in calculus [21], differential equathe question: How can be demonstrated that a function is
tions [22], linear systems [23], or Fourier analysis [24], ag Green function with some of formalism? We emphasize
detailed explanation of such abstractions is not usually giventhat we do not want to criticize the descriptive style of refer-
Hence, in order to have a more solid notion of the concepgnces [21-23] or [24], which are indeed quite advisable. We
of distributions, orgeneralized functionsspecialized litera-  simply want to point out that the treatment of distributions
ture should be consulted. This literature is specifically re<should be made with more care. Additionally to this discus-
lated to a coarse field of mathematics called functional analsjon, a description of the integral theorem of Helmholtz and
ysis [25, 26] and some notions on Lebesgue measure [27kjrchhoff, and its relation with the retarded potential is pre-

Certainly, in this work we will not provide specific and de- sented in Sec. 5. Finally, Sec. 6 outlines our conclusions.
tailed information about distributions. Instead of that, we are
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2. Derivation of the non-homogeneous wave ;_ g, y_ /%%

. — 45"
equation ot
0 0Ay
It is well known that, an electromagnetic wave, such as = V * (VX Ao) —az | Vo —p—5.=
a radar wave, is characterized in each point of the space )
z = (x,y,2), and each time, by the vectorial functions — V(Y- A — V2A, — 9 Vi) + 0% A 4
E = E(t,2), theelectric field(EF), andH = H(t, ), the (V- 4o) 0 =45 (Vo) +page ()

magneticAfieIc(MF). When assuming as I_<nown the VarjablesFrom the previous relation, it is obtained that
J = J(t, &), thecurrent densityvectorial field),oc = o (¢, &),
the charge density{scalar function)yg, the permittivity con-
stant, andp, the permeabilityconstant, the field& and H
can be found. These fields are determined byNfexwell P
equations V - E = /¢, the Gauss law for EFY - H = 0, =—J+V(V-A4)-V <q’u°)
the Gauss law for MFY x E + p(9H/dt) = 0, the Faraday ot
law, andV x H — q(0FE/ot) = J, the Amgere law. Here, Opo
V = (8/8,0/dy,9/0z), 0 = (0,0,0), and the media is =-J+V (V Ao — qat> - 0
assumed free of magnetics sources. In this case, operations
V - F andV x F refer, respectively, to thdivergenceand ~ NOw, by using the Gauss law for EF and Eqg. (3), we get
the rotational of any vectorial fieldf" = F(¢,%). Hence, a o P
method to findZ andH can be constructed from the previous V3o = = +p=(V - Ag). (6)
Maxwell equations and the next theorems: q ot
Theorem 1 Let F : R* — R® be a real valued vectorial | et us definef as a scalar solution of the equation
field of classC! (continuous function with continuous first ,
orQer partial dgrlvatlves),.exceptlonally in a finite number of V2f - pqﬁ _ (V Ay — q8“0> 7 )
points. Then/' is the gradient of some scalar functigithat ot? ot
is, F = V), ifand only if V x F = 0.
Theorem 2 If F : R® — R3 is aCl-vectorial field such @ndp, as the functionu = p(9f/0t) + po. From these
thatV - F = 0, then, there is &"-vectorial fieldG such that  definitions we obtain the relation
F=VxQaG. ) -

These theorems are demonstrated in [21] for real valued 87{ = W- (8)
functions dependent on variable(where F' = F'()), how-
ever, they can be generalized to complex valued functions ofhus, it can be noticed that
the formF : R® — C3. Moreover, these theorems are in-
dependent of variablg so, they are also true for complex H=V xA, (9)
fields [29] of the formF : R* — C® whereF = F(t,#). ) ) ) ,
Now, by assuming? and H as C2-fields (that means('- with A = Ay + Vf. Thg resultlln Eq. (9)is !og|ca}l because
fields with continuous second order partial derivatives), from¥ * (V) = 0 for all differentiable scalar field’; in other

the Gauss law for MF, and Theorem 2, there exists a figld WOrds,V x A =V x A, for suchA. SinceH can be cal-
culated, as suggested in Eq. (9), there is a functipthat

0?A 9]
2 — 0 = — . — g—
V=Ay — pq 52 J+V(V- Ay e (Vo)

such that ale
H =V x A,. 1) satisfies oA
iy E+p—- =V, (10)
Additionally, from Faraday law and Eg. (1), we have that ot
in analogy to the steps given for deriving Eq. (3). However,
0 =VxE —|—p%(v x Ag) Vu = V1 due to the fact that
@ Vin = B+ pg (Ao + V)

=V x <E+paAO),

ot 0Ag 0

= (E +P3t) —&—p%(Vf)
which, from Theorem 1, implies the existence of a function

tisfvi 0
1o satisfying 94y = Vo + pV (f) =V, (11)

E+p—> = Vo, (3) ot

On the other hand, from the Ardpe law, Egs.(1) and (3), and & consequence of I_Eqs. (3). (8), and (10). In this case, we can
the vectorial identityv x (V x Ag) = V(V - Ag) — V24, replaceVy, by Vi in Eq. (10) in order to obtain

(WhereV? := (0%/0x2)+(0?%/0y?)+ (0% /02?) is the Lapla- A

cian operator), it follows that E +p§ = Vu. (12)
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Thus, by using Egs. (9) and (12), thismust satisfy is denoted byu;. In opposite form, the object, assumed to
) be like a non-emitting electric pulse source=€ 0), reflects
V2A — qu = _J4+V (V A - qa“> (13)  or backscatters the incident wave. So, the reflected wave or
ot? ot backscattered fielés denoted by, (details of this concep-
tion are explained in [5]). Consequently, the general solution
0 u is known astotal field Since the total field can be found
E(V - 4), (14) by solving first the homogeneous wave equation, we are go-

in analogy to the steps for concluding Egs. (5) and (6) fromng to focus our attention in the construction,qf. Thus, in

Egs. (1) and (3). However, we have now a simplification inthiS section, variable, will be denote ag. for simplifying
our calculations because ' notation. Moreover, it is important to remark that any com-

ponent of the vectorial functiod in Eq.(18), withJ = 0,
V.A_ q@ -0 (15) can be found just as solving the scalar case.for Eq.(18),
ot ’ with ¢ = 0. In this sense, it will be sufficient to establish the
theory for solving this scalar case.
Let us consider a scalar wave with spatial period or wave-
length )\, refractive index media = 1 (air) and angular-
9 0%A B temporal frequency,. Such wave can be represented by
ve4 TPy T —J. 16)  the functionfi(t, &) = a(&)cos (wot + ¢(Z)), wherea(z)
- . o is the amplitude, ands(i) is the phase. This cosinu-
!n as'”ﬁ"ar fashion, from Eq. (15), the expression in Eq. (14)soidal form is well known from the classic theory for solv-
Is rewritten as Pu o ing the homogeneous wave equation; specifically speaking,
Viu TPl = (17)  the method callegeparation of variablgsand theFourier
o 4 . . series[22]. However, in an equivalent way, the form of
Therefore, by considering theave propagation Velocity he \ave can be generalized to the complex representation
co := 1/,/pq (as defined in [30]), and introducing the func- (t, ) = f(&)e’!, whereji is the real part ofs, f(z) =
tion ¢ := —o/q, Egs. (16) and (17) are correspondingly ex—a(ﬁ)em(f) is the spatial part of: (the so-calledphasoror

and
g
Vin==+p
q

as the reader can confirm.
Since Eq. (15) takes place, then Eq. (13) reduces to

pressed as complex perturbatiofd]), andi is the imaginary unit. Since
1924 this complex representation must satisfy the homogeneous
55 — VA=, (18a)  wave equation, we have th&?yu — (1/c3)(9%u/0t?) = 0,
cg Ot - ) . .
wherecy = Mg/Tp is the wave propagation velocity and
i@ 2, — (18b) Ty denotes the temporal period of such wave. In this case
ct o2 —Vie=¢ To = 1/T, would be called simply as the temporal frequency,

] . wherew, = 2n79. Thus, when substituting the complex

Then, when assuming and¢ as known functions, the so- representation ofi in the homogeneous wave equation, we
lutions of Egs. (18) ford and g, per_mlt us to fln_dH and  gptain thate?otV2 f(2) — (i%w? /c2) f(&)eiot = 0, which
E, from Egs. (9) and (12), respectively. Equation (18) forimplies
1, and analogously foA, is known as th@on-homogeneous (V2 + k2)£(2) = 0. (19)
wave equationor d’Alembert equatiorf5] in the distribu-
tional senseDue to its undulatory nature, the solution of this This last expression is calledlelmholtz equation where
equation is callecscalar wavein the case ofs, or vectorial ko = wo/co = (2779)/(AoT0) = (27)/ Ao is the wave num-
wave in the case of. ber or the angular-spatial frequency.

On the other hand, a well-known result in vectorial cal-
culus is thedivergence Gauss theorefl], which can be

3. The Helmholtz equation, the divergence written as

Gauss theorem, and the Green identities 3 2
/V-FdV: /F~ﬁdA, (20)
Q o0

For constructing a solution of the non-homogeneous wave
equation, from the methods applied for solving differential
equations [22,31, 32], it is typically proposed a general soluwhere F = F(2) is a C''-vectorial field on{2 such that
tion of the formu = po + 1, Wherepy is solution of the F : R? — R3, andQ is an elemental region i3 with
homogeneous version of the wave equation (wher 0),  positive parametrized boundatk). The surface)(2 can be
and i, is solution of the original non-homogeneous equa-a sphere, an ellipsoid, a parallelepiped, etc. In this theorem,
tion (when¢ # 0). In radar language [33-35], functianis symbolfé’ denotes the triple integral over the regnjgQ
interpreted as the source or the electric pulse emitted by atienotes the double integral over the surféte dV is a vol-
antenna. In this context, wheh+# 0, it is understood that ume differential elementA is an area differential element,
the pulse induces a propagating wave which reaches an obnd symbol denotes dot product. In addition, vectorial func-
ject. This wave is known asmittingor incident fieldand it tion 7 represents the unitary normal vector with respect to the
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surfacedf?, in such a way that, it points towards the outsidekey result for supporting thecalar diffraction theoryand
of the surface. So, if we tak€ = fVg, wheref = () it is related in part with the solution of a particular distri-
andg = g(#) are two differentiable scalar fields froR® to butional non-homogeneous wave equation, the so-catled
R, then tarded potentiabf the d’Alembert equatior5]. Now, let L
be a linear operator applied to scalar functions depending on
V-F=V-(fVg)=Vf-Vg+[V?.  (21) ;. Formally, adistributior(z, ) is said to be &reen func-

tion with respect taL, if it satisfies: a)G(z,4) = G(9, 2
When substituting this equation in the divergence Gauss "r all 4 — p(x y.z) andj = (u U) w()xig)Rg a(r:]gdxg)

lation, and introducing the directional derivati(@y/on) := LIG(#,9)] = 6(§ — #), whered(j — #) is the Dirac delta
Vg -, we obtain distribution However, every distributiorD is said to be a

3 3 2 5 Dirac delta, if it satisfies: 1P(y — &) = 0, for all § # z,
/Eﬁ-wmv+/QVQM/:/f§?A (22) and2)
Q

3
: % | D - aavi) -1
Equation (22) is known as thiirst Green identity Analo- R3

gously, when considering = gV f, the equality In this definitiondV (j)) refers to a volume differential ele-

3 3 2 ment with respect to the integration varialjle Thus, when
/Vg VSV + /gVQde _ /gﬁdA, 23 an arbitrary distributionD fulfills properties 1) and 2), we
on write § := D.
@ o0 _ Let us considerG(z,9) = g;(2), where g () =
is deduced. By subtracting Eq. (23) from Eq. (22), it is con-e**/I2=9/1/||z — §||. Here,|| - || denotes the Euclidean norm
cluded that for vectors inR3. This function satisfieg;(2) = gz(4) by

3 ) symmetry, ther7(z, §) fulfills property a). Is this= a Green
) ) dg of function? What linear operator could be related to tfis

/(fV 9= gV f)av = / ( o gan) dA, (24) o declare it as a Green function? Well, the obvious answer
Q a0 is that such operator must be involved with the Helmholtz
equation. So, if we considdr := [—1/(4m)](V? + kZ), then
off(@)] = [=1/(4m)]|(V? + k3) f (&) for any smooth func-
tion f : R® — C. Moreover,D(j — %) := L[G(%,9)] =
[—1/(4m)](V? + k3)gz(2) = 0 for all & # ¢, from Propo-
sition 1 in Appendix A. This also implies that property 1) is
satisfied byD (¢ — %), every time that: = . Thus, assum-
ing this D as a simple function depending gnwhich is a
discontinuous function iy = z, we rigorously have that

a relation calledsecond Green identity It is important to
remark that the divergence Gauss theorem is also valid f
C'-complex vectorial fields” : R* — C? that can be ex-
pressed in terms of complex scalar fielflgy : R® — C.
This last includes the possibility of considering fields of the
form F = F(t,%), f = f(t,2), andg = g(¢, &), which
means that” : R* — C3, andf,g : R* — C. The va-
lidity of this theorem is a consequence of the linearity of the
integrals for complex valued expressions that can be denoted 3

asF = Re(F) + ilm(F), where RéF) gnd ImF), are the /D@ —#)dV(j) =0

real and the complex parts éf, respectively. Thus, the only

required condition is to have RE) and Im(F'), asC'-real B

valued functions. by using improper integrals. Even in the case of more com-
plex integrals, if a function is zero almost everywhere in
certain domain, then its Lebesgue integral on such domain
should be zero [27]. Thus, since property 2) is not achieved
by this D, it implies thatG(z,y) = g3(&) is not a Green
function. But, why so many references [2—4, 8] declay€t)

as a Green function? Well, may be the answer is in the in-
terpretation ofD, and consequentlyg, as distributions. In
the spirit of considering a sequence of well-behaved approxi-
mating functions (see the Remarks in Appendix&);an be
rewritten to the equivalent form

4. The Green functions: language of distribu-
tions

Informally, any functiong that satisfies the Helmholtz equa-
tion almost everywher26, 27] onR?, could be calledGreen
function[4], however, sucly requires to satisfy another prop-
erties in the context aflistributions[26]. In this sense, ex-
pressioralmost everywhergefers to a property which is sat-
isfied at all points of a domain with the exception of the points
in a zero volume subset of the domain. For this particular P ikor

case, the property would be the fulfilling of the Helmholtz G(#,9) = WIE& e (), (25)
equation. On the other hand, the Green functions and the o . _
Green identities are important and useful, specially in opVherer = [|Z — 7| a”dwlggu fy(r) =1/rforr > 0. Inthis
tics, for establishing a transcendental theorem:itibegral  case for eachy > 0, f, is a smooth function for alt > 0
theorem of Helmholtz and KirchhoffThis theorem is the and right continuous at = 0. In other wordsf, /dr exists
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for all » > 0, and hm f~(r) = f4(0), respectively. Now, 2 o Tikor — 1
it is evident thai in Eq (25) satisfies properties a) and 1), T T o |:7,3 } (@-19)
however, if property 2) is required fdp with this newG, we dB. (&)
need to construct functiofi, conveniently. There are many 5
forms to do this construction, but we are going to propose (g—2) JA(E) — " ikor | tRor — 1
a particular one. Before starting with this construction, let ' | — 2| (4) = ¢ 3
us think again thatz(z, y) is g;(2), and consider the next dB:(2)
argumentation: 2 "
From property 1), it is inferred that the integral &f X <r> dA(g) = dme"™" (ikoe — 1), (29)

on R? is the same that the integral & on any open ball

7 = 7 3 M ] —_— T . .
Be(2) = {g € R : ||y — &[] <<}. Then, where the values = ||# — 7| in the double integrals are all

equal toe, becausg € dB.(i) = {§ € R3: ||§ — &|| = ¢}.

2 1 When considering Egs. (27), (28), and (29) in connection
/D@ —&)dV () = <47T> with Eq. (26), we get property 2). Therefore, functigy()
R3 results to be a Green function.
3 The last argumentation, although desirable, is false and its
% (V2 + k2) g (2)dV (§) = <_1> main fail is: functionVg; (2) = e o7 (ikor — 1) (2 — ) /73 is
‘ 4 not aC'*-function (a smooth function) oB. (%), specifically

aty = & wherer = 0. Then, we have incorrectly applied
3 3 the divergence Gauss theorem in Eq. (28), which requires
% V20 (#)dV (1) + k2 / (2)dv(@) |, @6 smoothness for the vector fielg; (). However, this mis-
/ 974V (G) 0 95(@)2V() (26) take motivates us to think about an appropriate election of
function £, in Eqg. (25). The sequence of functiojis satisfy

lim et*or = ko /p = g (g) forall § £ & (r > 0
for all e > 0 fixed. Thus, when considering a translation to y—0+ fr) = / 9:(9) i7 )

the origin, a change to spherical coordinates, and the use St thatis not enougr; For eagh> 0, we also need smooth-
improper integrals, we have that ness for the term¥e*" f. (r) for all § € B.(&). However,

since the term**o" is smooth for all- > 0, then a sequence

Be () B: ()

3 3 of functions of the form
§(2)dV (9) = 2(9)dV (9
[ s@ivo= [ w@ave w0z o
Be (@ Be (@ )=
@) (@) gl (1) 0<r<n,

4 .
= ﬁ[emoa(l — ikoe) — 1], 27)
0 wherepy(r) := 1/r, could be useful. For each> 0, p,(t)
could be a convenient polynomial function, in such a way
thatp, (v) = po(v), P.,(v) = po(7), andpl(y) = pg(v)-
Here, symbol$ and” denote, correspondingly, the first and

independently of the discontinuity ¢f (7) atg = &. Now,

3 3 the second derivatives with respectrto Hence, these con-
/ V2gy(2)dV (9) = / V- Vgy(2)dV (9) ditions would warrant the smoothness gf for all > 0.
B.(#) B.(2) However, ifp.,(r) is a linear combination of-powers and
s we want to analyze the behaviorGt*o" f. (r) (particularly
. R atr = 0), we first need to calculate the resultant expressions
=- / V- Vgy(2)dV (9) of the partial derivatives afikorrm with respect tar, y, and
B.(#) z. For instance, from the chain rule we have
/ 0 (z —u)
. . _ X n xr—Uu
—— [ Ve amaae). @) gt = ke S @)

9B.(£)

for & # ¢ (orr > 0). This expression is not necessarily
wheren (7)) is the unitary normal vector to the surfa2B. (i) right continuous at = 0 when considering the definition
anddA(g) is an area differential element with respectjto  of continuity by lateral limits. However, if we achieved to
This is a consequence of Proposition 2 in Appendix A andavoid divisions byr (removing the discontinuity at = 0),
the divergence Gauss theorem in variappleFollowing the  the formula in Eq. (31) would be better behaved. Thus, by
calculus of the previous triple integral (now a double inte-considering integer powers efsuch that: > 2 and defining
gral) we have that the vector := (1,0,0), we get
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ik ik
2[ ikor " — lim e Orrnb:gwﬂ — e 5=y
oz F=p h—0 h
6’ik}0|h| h n
S e
due to the fact that
ez’ko\h\ ‘h|n eikolh”h‘"
—_—mm —_— 0,
h—0+ h h—0— h

as the reader can confirm. Moreover, from Eq.(31) it follows

that

o . .
lim — [e"k‘”r"]
T—y 0T

= lim
Tr—u
r—0t

= lim {e“‘o'
Tr—u
r—07t

{eik‘or[nrn—l + iko’l“n] (J? _ u) }
T

n—2 + iko,r,n—l](m _ ’LL)} =0. (33)

In consequence, Egs. (31)-(33) warrant continuity for the +

term J[e*orrn] /0z for all & # g, and also fori = g,
when considering this term as function &f Nevertheless,
due to the radial symmetry af*o"[nr"=1 4 ikor™]/r in
Eqg. (31), termdle*komr™] /O, interpreted as function of,

must be also a continuous function. The same reasoning ap-

plies tod[et*o"r"] /0y andd[e?korr™] /Oz; therefore, iff., (1)

is a polynomial of powers > 2 for r values such that <

r < v, thenVe " £ (r) will be continuous for all points
4 corresponding to thosevalues. Moreover, without loss of
generality, we can assume thg{(r) = ar?+br3 +crt +dr®

with p., (7/2) = po(v/2), which implies that
py(r) = (42/5*)r? — (111 /4*)r3
+ (102/4°)r* — (32/~%)r® (34)
So, from Egs. (30) and (34) we get
ikor 2, ~
ikor ¢ (o J €A@@ =) Ty
Ver = { HFTBGE ) 0<r<y, OO
whereA(r) = [ikor — 1]/r® and
84  333r 4082  160r°
B(r)=—35—-—"3 5 A6
Y Y Y v
, 42r 11102 102r% 327
+(Zl€0) ? - 74 + 75 - 76 ’ (36)
are two functions such thahm A(r) = A(y) = B(y) =
'r‘—»’y
hm B(r), hm A'(r) = A'(y) = B'(y) = lim B'(r),
r—y

hm B(r) = B( ), and .lirng B'(r) = B'(0). Equation (35)

|s now a smooth function{'-class) for allj # & and also for
§ = 2. In the same way, terref*o" f. (r) is another smooth

31

function for allg by construction. From this construction and
Eq. (25), we can calculate again

/ D(j - 2)dV (j)

/ V2 1 (r)dV (§)

B. (%)

=—— lim
41 y—o+

+ky [ ey (r)dv

B:(2)

@] (37)

for anye > 0 arbitrary and fixed. But this time we have

3 3

eik“’fv(r)dV 7

1 — ikoe) — "%V (1 — ikoy)]

43
3 )

+ eik“r’p,y (7e) (38)

by definition of f, when consideringy < e. In the last
expression, the integral @¢ki*o" /r) can be calculated by a
translation to the origin and spherical coordinates, while the
integral ofe*o"p,, (r) is obtained from thenean value theo-
rem for integralq21, 36] due to the integrand’s continuity. In
this caser, = || — Jo|| With g, € B, (&) U 0B,(&), and

the factor(47~?3/3) is the volume of the balB, (). On the
other hand, when taking the complex module of the integral
in Eq. (38), we have that

3

L ~ 4m ikoe
[ e mavi) < glete

. 0
<(2)

— ikoé‘)

: ) 473
= 01— ikoy)| + Sl (). (39)

Additionally, from Eq. (34), the triangle inequality, and the
fact thatr, < ~, it follows that

47r'y 114872

(r) < — (40)

In an extreme caséiny®/3)|p, (re)| =~ (4my2/3) for re-
values close or equal t9, but the term(4my3/3)[p.(74)|
is always dominated by proportional factors4é. Then,
when considering very small values f(the limit context
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of Eq. (37)), the inequalities in Egs. (39) and (40) permit usalmost everywhere. Something similar happens when think-
to establish that*osp, (r,)(47y3/3) ~ 0 and ing in the one dimensional step function, also known as the
Heaviside step. The derivative of the Heaviside step is zero

2 at all points, except in the jump discontinuity where it is not

kg / e £, (r)dV (§) defined. The integral of this derivative along the real line is

B.(3) identically zero. However, if the Heaviside step is understood
ihee ] as a distribution, then itweak derivativg26] is a Dirac delta

~ 4 [e™0F(1 — ikoe) — 1] , (41)  (see the remarks in Appendix A). As well known, the integral

of this weak derivative along the real line is identically one.
These affirmations may seem contradictory, but they are only
a question of abstract interpretation.

from Eq. (38). Now, due to the form of terRie®*o" £ (r) in
Eqg. (35) and Proposition 2, it follows th&t2ei*o" £, (r) =
V- Vekor f (r) = =V, - Veikor £ (r). Therefore,

3 5. The integral theorem of Helmholtz and
/ V2o £ (r)dv () Kirchhoff and the retarded potential
Be(@) Let us consider an elemental regi@inin R? as a closed set,
3 in such a way that its boundary is conformed by two in-
=— / V- Veror £ (r)dV(g) dependent surfaces. This means th@t = S U 9B (&)
with S N dB.(&9) = 0, whereS is a surface that bounds
0B (%p) and () denotes the empty set. Also, we are going
- o (—1) X to assume that is smooth by parts, wher§ c 2 and
= - / e A(r) (& —g) - dA(9) dB.(#) C Q, due to the fact thaf is closed. So, re-
9B (#) gion © can be assumed as a glass ovoid with an inside air
e sphere, where the elliptical surface of the ovoid corresponds
= - = dme™ (ikoe — 1), (42) 10 S, and the surface of the air spher&diB. (o). It should
be understood th&lf2 limits two exterior zones and one in-

as a consequence of the divergence Gauss theorem in Valla; zone (see Fig. 1): the big exterior zone aiven by the
able;, applied to the field7ci*" £, (r), and the formula for o ¢ Sel(é " (%'0 ))c)': 0 v sy p (:eo)}y

Veikor £ (r) wheny < e = r. Naturally, the reduction of : : A :
th Il ext R , and th
the calculations in the double integral of Eq. (42) is impliedgsggi 5){ (eélgrag)r}ex(glgle:n {bge(ag), ;; Suealgn(egoz)(}?ne

fLor:l tre fagof,ha@ < aBE(‘?)'. So, since th.e srr]poothnes; of Therefore, when considering possible parametrizations of
thefie dVg F+(r) OnBF@) Is warranted in this case, then e grfacess and 0B (&p), we must think that the uni-
functionGin Eq. (25) satisfies property 2), when CorlSIderIngtary normalsi(#) should point towards the big exterior zone

\I/Evﬂf]}4}r)1é42)( S%r)'daﬁ;)‘ iLnlé:on%ﬁiffﬁjeirélrzgérszfihc- whenz € S, and point towards the small exterior zone when
tion. And o?lcourse thiss is ?J.nders:tood as the limit of a 2, 9Be(@o), {espective(ly.) So, i(f v)ve;a(p)ply the second Green
' ' . N identity to aC*-phasorf(z) = a(z)e**'*), corresponding to
zsgtjf/\r/]k?:rgf T?;gﬁ;ﬁ:;f;ﬁ:%?ny)ergggl(((@) "’f‘gpgﬁt somey solution of the homogeneous wave equationfhn
. x = gy(T : A ikor . o a

+ 2 5, except ing — 3, wheregy() 1 not defined and 21 t1e NCHOm(2) = et /rwith r = 17— o]l then we
AN o g et
G(9,9) = 0. Informally speaking, that is why; (&) inherits g
the name of its equivaleiit(z, 3).

Finally, we could be attempted to believe tidats an or-
dinary function like

B (%)

2

Big exterior zone

Inner zone

ethollz=dll ||z — g|| for & # g
Gu(i,5) = (43)
0 for =79,

and that is true, in some way, with respect to the image sets
induced by both expressions. Although formally

3

/ L(G.JdV (§) =0,

R? SV [ 1)

Small exterior zone

there is no obstacle to calf, as a Green function because FicGure 1. Sketch of the regiof. In this example, it is assumed
G is also ageneralizationof G, or, equivalently,G. = g5 as an ovoid with an inside sphere of radius
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by using the formulas in Proposition 1. Owing to the fact

2 5 3 that vectorn points towards the small exterior zone in this
g 2 2 articular case, we have that
dA = — dv. (44) P ,
[ (152 =93t )an= [ -gvipav.
o0 Q dg
1
However, 8n( «) = Vg i, (51a)
3 3 o o o ~
nla Lo — Tx Tx — T0
/(fV2g—gV2f)dV = /(—k%fg+k§gf)dv =0, (45) (&) = Fo— i~ (51b)
Q Q
because both the phasgr and function ¢ satisfy the then
Helmbholtz equation for all points if2. This implies that ag ,. e'Fof (1 — ikoe)
) ) 2 (#) = — (52)
n 3
09 _ I\ gu_ [ (05 _ 01
an don dA = o on from Egs. (50) and (51). Hence
0 s
7 [ (.0 O
99 Of\ . _ / ( 9 _ ) aA
+ / < n _98n> dA =0, (46) on  Jon
dB. (&) 8B.(&0)

or, equivalently,

=d4n { F(@2)e™% (1 — ikoe) — 561"%527{(@*)} , (53)

8 f )
= — dA
/ (f on  Yon after substituting Egs. (50) and (52) into Eq. (49k > 0T,
0B (&o) thenz, — &, and
0 0
:_/(a;ql af)dA (47) ) /2 ) A VA
s o an  Jon -
Since the double integral on the right hand side of Eq.(47) is 9B:(2o)

a constant, independently of thevalue, it follows that
) from Eqg. (53) and the fact thgtanddf/on are continuous
) of functions (f is C''-function). The limitin Eq. (54) represents
im, / (fan B 3n> dA = the same to write
0B (%0)
1

2
_Z(gz gi)“ (48) 4ﬂs/(f) (55)

including the possibility thab©2 = S U {Zo} for the limit by considering Egs. (48) and (54). Equation (55) is valid
case. Now, the integral aB. (Z¢) in Egs.(47) and (48) can for any C'-phasorf : R? — C, whereg(#) = e**" /r and

be expressed as r = ||& — Zol|. In this caseS U {&,} = 0Q is the union
2 of a smooth-by-parts surfacg with the frontier pointz,.
/ ( @ 5f> dA Examples of smooth-by parts surfaces could be a sphere, an
an Jon ellipsoid, the three faces of triangular pyramid, the six faces

9Be(%0) of a parallelepiped, etc. So, without loss of generality and

) dg af in the context ofdistributions the result in Eq. (55) is also
= dme ( on gan> valid when simply assuming = 99 in such a way that
Zo € Q\S. Equation (55) corresponds to timegral theorem
from the mean value theorem of integrals, whére® is  of Helmholtz and Kirchhoffwhich can be generalized to any
the area oD B, (1) andi. is some fixed point i B.(Z9). ¢ function satisfying the Helmholtz equation in an equivalent

; (49)

o

Thus, ifZ. € 0B (%), then sense. In other wordsg,in Eq. (55) could be any Green func-
eikoe tion. In this argumentation we have assumed g = 0
9(&s) = —, (50a)  for all # € Q, but such hypothesis can be modified to an
] equivalent case as follows: Lét be a Green function with
Vg(2.) = etkos (Zkofg— 1) (&, — &0), (50b)  respect to the linear operatdr, and let: be a distribution
€ similar tohyd (& — 1) with a constant factor (an independent
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term with respect to variable) ho, andz; ¢ Q\ 9. Thus,
if fis afunction such that[f(z)] = h(Z), then

— £(@) 5 (#.9) ) dA(@), (56)

forall § € Q\ 09Q. Equation (56) can be simply deduced, for

instance, from the second Green identity we have

/ <GaffaG) dA(#) =

o0

(GV?f — fV2@)dV ()

SR

3
/G (V2 + k) fdV (& /f V2 +kHGav(z), (57)
Q
but this is the same that

3 3
.= —4r [ GL[fldV(2) + 4 | fL[G)dV (2)
/ /

. / G, &)h(@)dV (&) + 47 f(§),  (58)

from definition of G. Then, from Eqgs.(57) and (58) we get

f@)M/( o )4

o0

3
+ [ G(g,2)h(&)dV (). (59)
[«

So, if h(Z) = hod(Z — Z1) with 21 ¢ Q \ 99, then the triple
integral on2 in Eq. (59) is identically zero from the proper-
ties of the Dirac delta. This is because

3
/ G(§,8)6(@ — 31)dV (2) = G(§, 1),
Q

only if £, € Q\ 09Q. Moreover, for allz € Q\ 09, the
integrandG(z, 9)h(2) = hoG(&,9)0(¢ — #1) = 0 does
not have any discontinuity if2 \ 992 when consideringz
in Eq. (25). Thus, by interchanging by ¢ and vice-versa

in Eq. (59), we get gotential solutionfor the problem of
solving L[f(z)] = h(z) for all & € Q\ 0. Such a prob-
lem would be solved with the next hypothesis: the knowl-
edge of functionsf anddf/dn on 952, a given functionh,
preferable smooth and defined @nand a possible and con-
venient Green functiod, defined with respect to the opera-
tor L. The inferred solution from Eq. (59) can be expressed

asf(z) = fo(#) + f1(Z) with

fo(fc)::“/(gi—f ¢ )aai) (e

and

3
fi(#) = / G, §)h(5)AV (7). (61)
Q

Q
3

~ [ s~
Q

] 7)dV (§) = h(z). (62)
Since L[f(#)] = h(&) by hypothesis, it follows that
L{fo(£)] = 0. In other words,f, and f; are particu-

lar solutions of the homogeneous and the non-homogeneous
Helmholtz equation, respectively. We say thfgtand f; are
“particular” functions, because both of them depend on the
G chosen. Eventually, beyond of considering a bounded set
as(, if we think in solving L[f] = h onR3, the result in

Eq. (59) would be equivalent to consider

3
f(@) = / G(&,§)h(5)AV (7). (63)
R3

as the potential solution.

On the other hand, the theory of Green functions, ex-
posed in a previous section, was described with respect to
the operator{—1/(4m)][V? + k3]. However, this theory
does not change if we consider other similar operators as
(V2 + k3) or [V2 + (ko/co)?]. Thus, when considering
L :=[-1/(4m)][V* + (ko/co)?], function

—ei(—ko/co)ll2—1l|

— : (64)
12 = all

go(2) ==

satisfies that 2
(724 2 ) mia) = (65)
e
when assuming as a constant vector arid# 3. To verify
Eqg. (65), it is only required to repladg andi, in Proposi-
tion 1 by —kq/co andg, respectively. Now, we want to solve

2
(1%3 _ v?) u(t, @) = C(t, 1), (66)
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on a domainf2, where ¢ (considered only as function of instance, if we simply assume thats a smooth function on
z) behaves as a Dirac delta translated to some point ouf?, then Eq. (68) can be expressed as

side of Q \ 9Q. So, by proposing a solution of the form o

u(t,2) = f(&)et*o! and substituting this solution in Eq. (66), LIF(3)] = h(@) = M <t _ =gl z) @2
we get o

eikot( V2 - ko) f(&) = ¢(t, ). (67)  whereH(t,2) = (e~"*t/(47))((t,2). From Eq. (61), by
€ interchangingt by ¢, and considerings = —gy, it follows

Therefore, when Eq.(67) is evaluatediat (||2—5||/c0), %),  that

it is obtained that

3
—i(ko/co)lIZ—7l| 54
ik (A — ¢ k?2 R 1) — € t— Hx y” A dV ~
giko(t=(l12—3l1/co)) <—v2— g)f(x) (@) Q/ Tl H( o) av(@)

€
=((t = (|2 = 9ll/co), ). (68)

—zkot
In some way, the equality in Eq. (67) suggests thabuld / |z —
be interpreted as a function with separable variables, time
t, and positionz. This is similar to conveniently think that is a potential solution of the equatiab[f] = h given in
¢(t,z) = P(t)Q(z), then Eq. (67) can be expressed asgq. (72). Indeed, from the form assumed farEq. (73)
L[f(2)] = h(2), whereh(Z) = hoQ(2) andho = ho(t) =  induces again the formula given in Eq. (71). Finally, if we
P(t)e~ kot /(47) is a constant term with respect to variable want to solveL[f] = h on R3, we could use Eq.(63) and
Z. Consequently, if the spatial part gfis a function like  conclude that
Q(Z) = §(Z—21) with &1 ¢ Q\ 09, then the phasof can be
calculated by the integral theorem of Helmholtz and Kirch- |z — gl . A
hoff, the second Green identity, and any convenient Green(t: 9)= | — 9 < vx) dv(z), (74)
functionG, as

(-2 S avw), @)

Co

2 in analogy to the previous formulas that preserve the name
f(9) = 1 / (Gaf _ 8G) dA(z2) of retarded potential Nevertheless, Eq. (74) is also valid for
47Tm on 0 the case whegq is a Dirac delta, specially in the case of ap-

proximating thisd with a sequence of smooth functions like
the Gaussians.

3
- / (GV2f — fV2G)AV(3),  (69)
Q 6. Discussion and Conclusions

forall g € Q\ 9Q. In addition, when takingz = go, it is

We have derived the retarded potential of a non-
concluded that

homogeneous wave equation by considering certain subtle
mathematical details. These details refer to the use of dis-

—iko||Z c
f(@) = 1 / M tributions, in our own and simplified interpretation of these
4w ) |12 — 9| generalized functions, and in what sense it is said that a given
) function is a Green function. According to our analysis, we
% (—V2 - g) F(@)dV(2), (70) ob_tamed a distributional solgtlofl for Eq. (72), which per
g mits us to construct a solutiom for Eq. (66). When con-

sidering Eq. (72) in a bounded st the solution can take
from Eqs.(64), (65), and (69). Furthermore, Eq.(70) Impllesplace by establishing boundary conditions in the fronti@r
that as exposed by Eg. (59). These conditions may be imposed in
3 o f,orindf/on, depending on the problem. For instance, in
7) i/ ( [12=9]] x) dv(#), (71) the simple case of = 0 for all points in(, it follows that
bY=g 9| c ’ f = fo from Eqg. (60). In this particular case, if we only
¢ know f on the frontierof2 (Dirichlet problem), then a desir-
from the form assumed fqi, and Egs. (68) and (70). The able election of7 could be a Green function that vanishes on
expression in Eq. (71) is known as tretarded potentiabf  this boundary.
¢, as mentioned in [5]. Its name reveals that the signi In a general perspective, the base idea of the potential so-
recovered from the sourcewith a delay in time. This poten- lutions is manifested by Egs. (59)-(61) and (63), where the
tial represents a standard solution of th&lembert equation  election of an appropriate Green function is crucial to obtain
displayed in Eqg. (66). Moreover, the formula in Eq. (71) is specific results. For example, the formula given by Eq. (71)
independent of the fact thgtbehaves as a Dirac delta. For in the bounded case, or by Eq. (74) in the unbounded case,
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respectively. The retarded potentials allow us to build sothe set ofC*°-functions¢ such that,p, with all its deriva-
lutions of classic problems in electrodynamics, wave propiives vanish at infinity as fast dg¢||~~ when||z|| — oo,
agators, radar, among others. For instance, potential theognd independently of how long is the positive integjerAny
can be applied for modeling equations related with the emisfunction¢ in the setD is said to bearticularly well-behaved
sion and detection of a SAR signal [5, 6]. In a SAR config-and such set would correspond to the spacesiffunctions
uration, the main equation that involves the recovered valdefined in [26]. According to [28], a sequence of functions
ues of the signal and the scattering object density is a consé+., } (considering values > 0) is said to beegular, if and
quence of using Egs. (71) or (74), in connection with the firstonly if lim.,_,¢+ fﬂis h,¢dV exists, for allp € D. Thus, a
Born approximation. Such an approximation reduces the illdistribution H is a regular sequence of functionsZingiven
posed problem of recovering the scattering object to a simpley {4.,}, where symbol
convolution-filtering problem.

About the mathematical rigor found in some references, 2
an explicit and formal explanation about Green functions, by /HqﬁdV
using operator theory, is found in [1]. Although in this ref- RS
erence there is no mention on thg{(s) = %" /r is Green

function with respect to the Helmholtz operator, an exten-1CanNs 3
sive analysis to c_JIerl\_/e Green functions from many d|_ffe_rent lim / heypdV. (A1)
linear operators is given. Nevertheless, such analysis is out y—0+

of the scope of these notes. On the other hand, it is inter- R

esting to notice that expressigp() is declared as a Green Of course, this symbol is not a true integral, becatisis a
function in many books (for example [2—4, 8]), without any Seguence. Even in the case whéris interpreted as the limit
formal proof of that fact. Whereas in some other books andf this sequence, such limit could not be an ordinary function
for some other kind of Green functions, a proof is provided@nd that is whyH is declared as aymbolic functior{28].
but with drawbacks. For instance, the argumentation in [21]fn a more strict sense, distribution, is a continuous linear
when justifyingf (2, §) = —1/(4x||2 — 9||) as a Green func- unctlonaITH deflngd on the space of functiofis[1, 26], as
tion with respect to a distributional Poisson equation. In thathe symbolic notation

reference, the drawback is exactly the same that was exposed 3

in Sec. 4 on the illegal use of the divergence Gauss theorem. o

Of course, we do not pretend to criticize that books because Tu(9) = /Hd)dV

they are actually excellent references and we are far from ex- R3

posing a formal proof. However, we expect at least to mosyggests.

tivate the reader on the importance of considering Sequences |n this discussion, we have relaxed the hypothesis by con-
of approximating functions [28], to have a more clear ideasjgering D, as the set conformed by functions that are at
about the handling of distributions. Such as made in Eq. (25)east ofC'!-class and that vanish at infinity in the next weak
by considering these kind of sequences, an equivalence rganse [26]: functior vanishes at infinity, if and only if
lation could be established betweéfiz, i), defined in Eq. V[Sy.4] is finite, for all constant > 0. Here,S, , := {& :
(25), and functiory, (). SinceG(&,9) = gy(2) is valid  |p(2)| > ¢} andV[S, ;] is the volume (oBorel measurg
almost everywhere with respect to the variaplee R® (or  of the setS; ,. Moreover, in this work, aistribution H is

& € R?) [26,27], there is no doubt now of calling;(#)  understood as the limit of a sequer{de }, conformed by el-

as a Green function. In a similar manner, the argumentagments in the s, our particular set ofvell-behavedr test
tionin [21] when justifyingf(Z, §) as a Green function could  fynctions. However, for practical purposes, our test functions
be improved when considering sequences of smooth appro¥ not require to satisfy more properties, like the regularity

on Poisson and Laplace equations in reference [3], we wanj gt

to emphasize a very good footnote which refers to the vol- H(#) = lim h,(2). (A2)
ume integral of Eq. (1.36) in that reference: “The reader may y—07F

complain that (1.36) has been obtained in an illegal fashiorrherefore, when an ordinary functidnis such thati(z) =
sincel/[x — x'| is not well-behaved inside the volumé.  f(#) almost everywhere, we say thats the distributionH.
Rigor can be restored by using a limiting process...” Well,||)) When considering{e““OffW(r)} with = ||2|| in Eq. (25)

suchlimiting processhas been exemplified in this work. (the simple case whej= 0), we clearly have that functions
h (&) := et*o” . (r) are of C'-class, as described in Sec. 4.
Appendix A Now, sincelfy (£)| = | f5(r)| = fy(r), thenS, ., = S; =
{2 : f,(r) > t}. Hence, given a pair of constantsy > 0,
Remarks: it is not difficult to observe that'[S, ,] is finite in any case:

) Based on [28], definition oflistribution for the general a) For2/vy < t, there is nai € R? such thatf, (r) > ¢ be-
case of functiong : R* — C is given as follows: LeD be  cause the maximum value ¢f is achieved at = ~/2, then
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Siy =0 andV[(D] = 0. b) For1/y <t < 2/v, we have
S; ., = B,,(0)\ By, (0) for some fixed value131 andrs such

that0 < r; < ry < 7. Here,B,, (0) = B, (0) U 0B, (0)
and that impliesS; , C B,,(0) C B,(0), wh|ch means that
VI[Siy] < V[Br,(0)] < V[B,(0)] = (479°/3). c) For

t < 1/v, we haveS;, = By;(0) \ B, (0) C By(0)
for some fixed value; such thato < r; < 1/t, then
VI[SiA] S VI[Bi1:(0)] = (47/3t%).

Therefore, remark Ill) establishes that the sequence of
functions used in Eq. (25) is a sequence of well-behave

functions, a sequence in the g2defined in remark I1).

IV) According to our definition ofD, any function¢ in
this set has at least a continuous partial derivatigoz (it
could be also with respect tg or z). Then, a sequence of
C?-class functions irD given by {4}, could induce a se-

37

Proposition 1 The functiong(z) = e /r, wherer =
[|& — @o]| > 0 andiy is a constant position, satisfies

Vg(#) = ethor (”‘W—l> (& — ). (A4)

3

Moreover, such function satisfies the Helmholtz equation
(V2 +k2)g(2) = 0forall & # 2.

Proposition 2 Let us consider the variables =

(z,y,2),

= (u,v,w), and the operatoV ; := (9/0u, d/0v, 0/0w).

hus, for any vectorial field of the ford (r)(Z — g), with
r = ||# — ¢|| and H(r) as a smooth function for all > 0,
we have that

Vi -H(r)(@—9)=-V-H(r)@@-9). (A9

quence{0h., /0x} contained inD. If so, we can talk about In particular, functiong; () = ei*ollé=9ll/||3 — || satis-

OwH [0z = lim.,_ o+ Oh,/0x andH = lim.,_ ¢+ h., inde-

fore, if the sequence®h., /dx} and{h,} are such that

3

3
/ (0w H 02)$dV = — / H(9/0z)dV.
R3

R3

(A3)

Eq. (A1), themd,, H/dx is said to be aveak derivativef H

fies thatVg, (&) = e [(ikor — 1)/r®] (2 —
pendently if these limits represent functions or not. Thereconsequence of Proposition 1 (whan=

9), as a direct
7). Therefore,
Vi - Vgy(d) =

—V - Vygy(2), (A6)

for & # g.

The last two propositions can be demonstrated by a care-

ful calculation of partial derivatives and an adequate use of
for all ¢ € D (by considering the symbolic representation inthe chain rule.

in a distributional sense. Of course, we have used the notation
dwH 0z, to distinguish this limit (or generalized function) Acknowledgment

from the usual partial derivative @, which isOH/0x every
time thatH is interpreted as an ordinary functioH (= h).

The authors thank Dr.

Gerardo GmrdAlmeida for their

valuable comments on this paper.

1. B. FriedmanpPrinciples and Techniques of Applied Mathemat-

ics (John Wiley & Sons, Inc., NY, 1956). pp. 134-163.

2. G. Arfken, Mathematical Methods for PhysicistéAcademic
Press, Inc., NY, 1985). pp. 897-924.

3. J.D. JacksornClassical Electrodynami¢cgJohn Wiley & Sons,
Inc., NJ, 1999), pp.34-37.

4. J.W. Goodmanintroduction to Fourier Optics(McGraw-Hill,
Inc., NY, 1968). pp. 30-40.

5. M. Gilman and S. Tsynko\SIAM Journal on Imaging Sciences
8(2015) 186.

6. M. CheneySIAM Reviewt3(2001) 301.
7. S.V. TsynkovSIAM Journal on Imaging Scienc2$2009) 646.

8. M. Bertero and P. Boccacdntroduction to inverse problems in
imaging (IOP Publishing Ltd, London, 1998). pp. 191-219.

9. A. Karlsson, H. Otterheim, and R. Stewalt,Opt. Soc. Am. A
10(1993) 886.

K.F. Ren, G. Gehan, and G. Gouesbeét, Opt. Soc. Am. A4
(1997) 3014.

M.A. Alonso and G.W. Forbes]. Opt. Soc. Am. A4 (1997)
1076.

10.

11.

. S.A. Prahl, D.G. Fischer, and D.D. DuncdnOpt. Soc. Am. A

26 (2009) 1533.

. J.A. Stratton and L.J. Ch®&hys. Re\56 (1939) 99.
. X. Wang, Z. Fan, and T. Tang, Opt. Soc. Am. &3 (2006)

872.

. V.. Tatarskii,J. Opt. Soc. Am. A2 (1995) 1254.
. H. Ardavan, A. Ardavan, J. Singleton, J. Fasel, and A. Schmidt,

J. Opt. Soc. Am. &5 (2008) 543.

. |. Lyuboshenko and H. Mae, J. Opt. Soc. Am. A6 (1999)

378.

. G. Fornaro, G. Franceschetti, and R. Lan&EE Transactions

on Geoscience and Remote Sengd@1996) 720.

. G. Fornaro, G. Franceschetti, R. Lanari, and E. Sansb$€ipt.

Soc. Am. AL3(1996) 2355.

. S. Marano, F. Palmieri, and G. FranceschéttiOpt. Soc. Am.

A19(2002) 1319.

. J.E. Marsden and M.J. Hoffma¥ector Calculus(W.H. Free-

man and Company, NY, 1996). pp. 522-531.

Rev. Mex. Fis. B4 (2018) 26-38



38

22.

23.

24,

25.

26.

27.

28.

A. TELLEZ-QUINONES, J.C. VALDIVIEZO-NAVARRO, A. SALAZAR-GARIBAY AND A.A. LOPEZ-CALOCA

D.G. zill and M.R. Cullen, Differential Equations with
Boundary-Value ProblemgCengage Learning, Belmont, CA,
2009). pp. 292-295.

A.V. Oppenheim, A.S. Willsky, and S.H. Nawa$ignals and
Systemg(Prentice-Hall, Inc., NY, 1997). pp. 32-38.

H.P. Hsu, Fourier Analysis (Simon & Schuster, Inc., NY,
1970). pp. 37-51.

E. Kreyszig, Introductory Functional Analysis with Applica-
tions, (John Wiley & Sons, NY, 1978). pp. 50-110.

E.H. Lieb and M. LossAnalysis (AMS, Rhode Island, 2001).
pp. 135-158.

R.G. Bartle,The Elements of Integration and Lebesgue Mea-34:
35.

sure (John Wiley & Sons, NY, 1995). pp. 6-51.

R.N. Bracewell, The Fourier Transform and its Applications
(McGraw-Hill, Boston, 2000). pp. 74-104.

29.

30.

31.

32.

33.

36.

J.E. Marsden and M.J. HoffmarBasic Complex Analysis
(W.H. Freeman and Company, NY, 1999). pp. 95-110.

H. Maitre, Processing of Synthetic Aperture Radar Images
(John Wiley & Sons, Inc., NJ, 2008). pp. 1-6.

L.C. EvansPartial Differential Equations(AMS, Providence,
Rhode Island, 2010). pp.65-85.

M.K. Keane A very Applied First Course in Partial Differential
Equations (Pearson Education Limited, Harlow, UK, 2001).
pp. 139-163.

F.M. Henderson,Principles and Applications of Imaging
Radar, (John Wiley & Sons, Inc., NY, 1998). pp. 9-47.

R. Bamler and P. Hartlnverse Problem44 (1998) R1.

W.M. Brown, IEEE Transactions on Aerospace and Electronic
System#AES-3(1967) 217.

M. Spivak,Calculus (W.A. Benjamin Inc., NY, 1967). p. 383.

Rev. Mex. Fis. B4 (2018) 26-38



