
Comparison of multihardware
parallel implementations for a phase
unwrapping algorithm

Francisco Javier Hernandez-Lopez
Mariano Rivera
Adan Salazar-Garibay
Ricardo Legarda-Sáenz

Francisco Javier Hernandez-Lopez, Mariano Rivera, Adan Salazar-Garibay, Ricardo Legarda-Sáenz,
“Comparison of multihardware parallel implementations for a phase unwrapping algorithm,” Opt.
Eng. 57(4), 043113 (2018), doi: 10.1117/1.OE.57.4.043113.

Comparison of multihardware parallel implementations for
a phase unwrapping algorithm

Francisco Javier Hernandez-Lopez,a,* Mariano Rivera,b,c Adan Salazar-Garibay,d and Ricardo Legarda-Sáenze
aCONACYT—Centro de Investigación en Matemáticas A.C., CIMAT Unidad Mérida, PCTY, Mérida, Yucatán, México
bCentro de Investigación en Matemáticas A.C., CIMAT, Guanajuato, México
cCentro Nacional de Supercómputo IPICYT, San Luis Potosí, México
dCONACYT—Centro de Investigación en Geografía y Geomática, CentroGEO Unidad Mérida, Mérida, Yucatán, México
eUniversidad Autónoma de Yucatán, CLIR at Facultad de Matemáticas, Mérida, Yucatán, México

Abstract. Phase unwrapping is an important problem in the areas of optical metrology, synthetic aperture radar
(SAR) image analysis, and magnetic resonance imaging (MRI) analysis. These images are becoming larger in
size and, particularly, the availability and need for processing of SAR and MRI data have increased significantly
with the acquisition of remote sensing data and the popularization of magnetic resonators in clinical diagnosis.
Therefore, it is important to develop faster and accurate phase unwrapping algorithms. We propose a parallel
multigrid algorithm of a phase unwrapping method named accumulation of residual maps, which builds on
a serial algorithm that consists of the minimization of a cost function; minimization achieved by means of a serial
Gauss–Seidel kind algorithm. Our algorithm also optimizes the original cost function, but unlike the original work,
our algorithm is a parallel Jacobi class with alternated minimizations. This strategy is known as the chessboard
type, where red pixels can be updated in parallel at same iteration since they are independent. Similarly, black
pixels can be updated in parallel in an alternating iteration. We present parallel implementations of our algorithm
for different parallel multicore architecture such as CPU-multicore, Xeon Phi coprocessor, and Nvidia graphics
processing unit. In all the cases, we obtain a superior performance of our parallel algorithm when compared with
the original serial version. In addition, we present a detailed comparative performance of the developed parallel
versions. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.57.4.043113]

Keywords: phase unwrapping; synthetic aperture radar interferograms; parallel computing; multicore CPU; Xeon Phi; graphics
processing unit.

Paper 171747 received Nov. 1, 2017; accepted for publication Mar. 20, 2018; published online Apr. 28, 2018.

1 Introduction
Phase unwrapping is an important problem in the areas of
optical metrology, synthetic aperture radar (SAR) image
analysis, and magnetic resonance imaging analysis. In this
paper, the case study is developed for unwrapping large
dimensions SAR interferograms1–3 using parallel computing.

An SAR signal contains amplitude and phase informa-
tion. Amplitude is the strength of the radar response and
phase is the fraction of one complete sine wave cycle.4

Therefore, the SAR interferogram is generated by two com-
plex SAR images that observe the same area from slightly
different look angles. This can be done with two radars
mounted on the same platform or with a radar at different
times by exploiting repeated orbits of the same satellite.
Then, the interferogram is obtained by cross multiplying,
pixel-by-pixel, the first SAR image u1 ¼ ju1jeiϕ1 with the
complex conjugate of the second u�2 ¼ ju2je−iϕ2 .5–7 Thus,
the interferogram amplitude is the amplitude of the first
image multiplied by that of the second one ju1jju2j, whereas
its interferometric phase is the phase difference between the
images ϕ ¼ ϕ1 − ϕ2.

The relationship between the actual phase ϕ and the com-
puted wrapped phase g can be mathematically expressed as

EQ-TARGET;temp:intralink-;e001;326;369gr ¼ Wfϕr þ ηrg; (1)

where r indicates a pixel position in a regular lattice L; ηr
represents noise and in the case of SAR phase it is correlated
with the signal magnitude; finally,

EQ-TARGET;temp:intralink-;e002;326;314Wfzg¼defzþ 2nπ; (2)

is the nonlinear wrapping operator, with n an integer such
that Wfzg ∈ ð−π; π�. If the Nyquist criterion is violated

EQ-TARGET;temp:intralink-;e003;326;257ϕr þ ηr − ϕs − ηs ≠ Wðgr − gsÞ; (3)

with s ∈ N r and N r ¼ fs ∈ L∶
��r − s

��
2
¼ 1g the set of

first neighbor pixels to the pixel r, then the unwrapping proc-
ess needs to be implemented as the solution to an illposed
inverse problem (i.e., a problem with many possible solu-
tions) to estimate the unwrapped phase f. To this end, the
efficient accumulation of residual maps (ARM) method
was recently reported in Ref. 8, which unwraps phase maps
with the additional advantage that can be implemented in
parallel.

Parallel computing consists of the simultaneous execution
of calculations, instructions, processes, or tasks using more
than one processor. There are different architectures to

*Address all correspondence to: Francisco Javier Hernandez-Lopez, E-mail:
fcoj23@cimat.mx 0091-3286/2018/$25.00 © 2018 SPIE

Optical Engineering 043113-1 April 2018 • Vol. 57(4)

Optical Engineering 57(4), 043113 (April 2018)

https://doi.org/10.1117/1.OE.57.4.043113
https://doi.org/10.1117/1.OE.57.4.043113
https://doi.org/10.1117/1.OE.57.4.043113
https://doi.org/10.1117/1.OE.57.4.043113
https://doi.org/10.1117/1.OE.57.4.043113
https://doi.org/10.1117/1.OE.57.4.043113
mailto:fcoj23@cimat.mx
mailto:fcoj23@cimat.mx

achieve parallel computing; for example multicore com-
puters, graphics processing units (GPUs), Xeon Phi copro-
cessors (XPCs), computer clusters, and field programmable
gate arrays (FPGAs). According to each one of these archi-
tectures, there are different programming paradigms and
languages, which exploit their capacities. Some of them are
OpenMPI for clusters; OpenMP for multicore CPUs and
XPCs; Cg, compute unified device architecture (CUDA),
OpenCL, and OpenACC for GPUs and Xilinx tools for
FPGAs. Furthermore, the architectures can be merged to
improve the performance of some problems. It is possible
to have a multicore computer with one or more GPUs, or
to have a cluster with one or more GPUs and FPGAs in
each node,9 or a grid of GPUs, etc.

This work was planned to present a comparison as fair as
possible between parallel implementations of the ARM
method using a multicore CPU, XPC and GPU, to help
implementers to take a decision in future parallel implemen-
tations of phase unwrapping algorithms that are being devel-
oped. In the state of the art, it is common to find this type of
comparisons using implementations of simple algorithms of
linear algebra methods (vector and matrix multiplications,
factorizations), transformations (Fourier transform), or inter-
polations (bilinear, bicubic, and splines). These implementa-
tions are useful as benchmark tests but are far from reflecting
the actual working conditions of current image analysis
methods. Our study is complementary to such tests and
throws another type of conclusions, more focused on the
implementation of image analysis algorithms. For this rea-
son, we are using a complex algorithm of the state of the
art (multigrid phase unwrapping) implemented in different
frameworks and we evaluate them in production conditions.
The evaluated frameworks are more similar to the actual
working conditions. These frameworks are summarized in
Table 1. Framework 1 consists of using MATLAB with
OpenMP directives into a mex-C file to execute the program
in the multicore CPU or XPC, and using CUDA kernel inte-
gration in MATLAB (without mex-C) to process in the GPU.
Framework 2 consists of using C/C++ with OpenMP direc-
tives to execute the program in the multicore CPU or in the
XPC, and with CUDA kernel functions to execute the pro-
gram in a GPU. The hardware architectures we are not con-
sidering are computer clusters and FPGAs. Our reasons are
that computer clusters seem not to be proper for cellular
processes with high messaging interchange (the kind of
processing often used in image processing), and FPGA
requires of specific and dedicated hardware.

The remaining sections of this paper are organized as fol-
lows: Sec. 2 gives a brief review of the serial ARM method.
Section 3 describes the parallel implementation of the
method and gives the implementation details of the most

demanding process. Sections 4 and 5 present a comparison
of the processing time and speedup between the multicore
CPU, XPC, and GPU architectures, using simulated and
real data, respectively. Section 5 also discusses the wrapped
phase generation from two SAR images. Finally, Sec. 6 gives
our remarks and conclusions.

2 Serial Implementation of Accumulation of
Residual Maps Method

The ARM method consists of an incremental scheme for
unwrapping the wrapped phase g. Let

EQ-TARGET;temp:intralink-;e004;326;630ρrs¼defWðgr − gsÞ; (4)

be the wrapped first differences of the wrapped phase and
fðkÞ be the current estimate of the unwrapped phase. Then,
we can compute the current residual wrapped differences as

EQ-TARGET;temp:intralink-;e005;326;566ρðkÞrs ¼defWfρrs − fðkÞr þ fðkÞs g: (5)

If the residual differences field ρðkÞrs ≠ 0, then one could
try to estimate an update field δðkÞ such that

EQ-TARGET;temp:intralink-;e006;326;513

X

ðr;sÞ∈L
WfρðkÞrs − δðkÞr þ δðkÞs g2 ≤

X

ðr;sÞ∈L
½ρðkÞrs �2: (6)

In any case, the field δ will compensate only the
conservative component of the residual differences field
ρrs; i.e., monopoles in the sense of wrapped phase could
not be solved.10–13

In the ARM algorithm, the current phase is updated
(accumulated) with

EQ-TARGET;temp:intralink-;e007;326;405fðkþ1Þ
r ¼ fðkÞr þ δ�ðkÞr ; (7)

the residual wrapped differences that are computed with
Eq. (5), and the update field δ�ðkÞ is computed by minimizing
the half-quadratic cost function
EQ-TARGET;temp:intralink-;e008;326;342

δ�ðkÞ;ω�ðkÞ ¼ arg min
δðkÞ;ωðkÞ

U½δðkÞ;ωðkÞ; ρðkÞ�

¼ 1

2

X

r∈L

X

s∈N r

ð½ωðkÞ
rs �2f½ρðkÞrs − δðkÞr þ δðkÞs �2

þ λ½δðkÞs − δðkÞr �2g þ μ½1 − ωðkÞ
rs �2Þ; (8)

where λ and μ are the positive parameters of the algorithm
(see Ref. 8 for a deeper discussion on their selection). The
data term in Eq. (8) is a weighted version of the regularized
least square potential.13–15 The second term {membrane
potential: ½δðkÞs − δðkÞr �2} penalizes large local variations on
the unwrapped phase,16,17 which reduces noise.

The solution to Eq. (8) can be computed by alternating
minimization with respect to δðkÞ and ωðkÞ. Thus, if ωðkÞ is
fixed, then the solution of the positive-definite diagonal-
dominant linear system given by ∂U∕∂δðkÞr ¼ 0 can be com-
puted with a Gauss–Seidel (GS) iterative scheme

EQ-TARGET;temp:intralink-;e009;326;127δ�ðkÞr ¼
P

s∈N r
½ωðkÞ

rs �2½ρðkÞrs þ δðkÞs ð1þ λÞ�
P
s∈N r

½ωðkÞ
rs �2½1þ λ�

; (9)

Table 1 Parallel implementation frameworks.

Architecture Framework 1 (MATLAB)
Framework 2

(C/C++)

Multicore CPU
or XPC

OpenMP with mex-C file OpenMP

GPU CUDA kernel integration
in MATLAB

CUDA kernels

Optical Engineering 043113-2 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

where δðkÞs (for s ∈ N r) are the first neighbor values to the

δðkÞr . In the case of a Jacobi update scheme, δðkÞs ≡ δðk−1Þs . In
the GS scheme, the updated values are used; i.e., in a pixel
scanning top-down/left-right, the left and upper pixels are at
iteration k and the right and down pixels are at iteration
k − 1. Our parallel implementation uses the red–black update

rule, explained in Sec. 3. Similarly, from ∂U∕∂ωðkÞ
rs ¼ 0, we

obtain the closed equation:

EQ-TARGET;temp:intralink-;e010;63;656ω�ðkÞ
rs ¼ μ

μþ ½ρðkÞrs − δðkÞr þ δðkÞs �2 þ λ½δðkÞs − δðkÞr �2
: (10)

It is well known that GS is prone to having a slow reduc-
tion of low-frequency residuals. Thus, the convergence is
accelerated using a multigrid strategy;18 this strategy is sum-
marized in Algorithm 1. It shows a simple multigrid scheme
where the solution at the level N is used as initial guess for
level N − 1. This proposal implements a full-nested multigrid
strategy detailed in Algorithm 2. In the implementation of
Algorithm 2, the computation of residual wrapped phase
at the end of each iteration is required. The residual wrapped
phase between two given phases g and f is denoted as

EQ-TARGET;temp:intralink-;e011;63;502residualðg; fÞ¼defWðg − fÞ: (11)

To implement this function, one can use the equation

EQ-TARGET;temp:intralink-;e012;326;522residualðg; fÞ ¼ atan2½sinðg − fÞ; cosðg − fÞ�: (12)

The serial ARM method was implemented in MATLAB
using mex-files and it is available in Ref. 19.

3 Parallel Implementation
In our parallel implementation, we develop two frameworks
(see Table 1). Framework 1 uses MATLAB and improves the
processing time of Eqs. (9) and (10). We include OpenMP
directives into the mex-C file to execute the heavy work in
the multicore CPU or in the XPC. In contrast, we use the
CUDA kernel integration in MATLAB (without mex-C)
to process in the GPU. Framework 2 uses C/C++ and
improves the processing time of the whole method. Then,
the Algorithms 1 and 2 are translated from MATLAB scripts
to C/C++ files, this framework uses only OpenCV for read-
ing and writing input images. With the whole code in C/C++,
we can include OpenMP directives to execute the program in
the multicore CPU or in the XPC, and we can create CUDA
kernel functions to execute the program in a GPU. An imple-
mentation of the proposed frameworks can be found in the fol-
lowing code ocean capsules: https://codeocean.com/2018/04/
09/comparison-of-multi-hardware-parallel-implementations-
for-a-phase-unwrapping-algorithm/ and https://codeocean.
com/2018/04/23/comparison-of-multi-hardware-parallel-
implementations-for-a-phase-unwrapping-algorithm/.

From the serial ARM method, we note that the solver for
Eqs. (9) and (10) is the computationally heaviest part, then
we parallelize these equations as a first approach. Note that,
for updating ω in Eq. (10) as well as the sentences in the
Algorithms 1 and 2, we need only pixel-wise operations,
applying an independent parallelism model,20 whereas for
updating δ in Eq. (9), we need a strategy to parallelize
the GS method because the communication between a pixel
and its neighborhoods. The following subsections describe
the GS method and the implementation details, focusing
on the parallelization of Eq. (9).

3.1 Gauss–Seidel Method

The GS method is one of the basic iterative methods for
solving linear systems.21 In our particular case, we want

Algorithm 1 Multigrid unwrapping. Multigrid strategy with N scale
levels.

1: function MULTIGRIDUNWRAP (g; f ; λ; μ; N; T),

2: if N > 0 then,

3: ĝ =DOWNSAMPLE(g); ▹Down sampling

4: f̂ =DOWNSAMPLE(f);

5: f̂ =MULTIGRIDUNWRAP (ĝ; f̂ ; λ; μ; N − 1; T); ▹Change level,

6: f =UPSAMPLE(f̂); ▹Up sampling,

7: end if

8: //Unwrap current level,

9: Set δ ¼ 0; ∀ r ,

10: Set ωr s ¼ 1; ∀ ðr ; sÞ; ▹A different initial value for ω can be used,

11: Compute ρðkÞr s ; ∀ ðr ; sÞ, with Eq. (5)

12: for t ¼ 1;2; : : : ; T do,

13: Update δ, keeping fixed ω, with Eq. (9),

14: Update ω, keeping fixed δ, with Eq. (10),

15: end for

16: f ¼ f þ δ,

17: end function

18: return f .

Algorithm 2 Nested Multigrid Unwrapping. Nested multigrid strategy
for Algorithm 1 with N iterations of N scale levels.

1: function NESTMULTIGRIDUNWRAP(g; λ; μ; N; T)

2: f ¼ 0;N0 ¼ N

3: while N > 0 do

4: f 0 = MULTIGRIDUNWRAP (g; λ; μ; N0; T); ▹Simple multigrid

5: f ¼ f þ f 0;

6: g ¼ residualðg; f Þ; ▹Residual wrapped phase,

7: N ¼ N − 1;

8: end while

9: return f þ g;

10: end function

Optical Engineering 043113-3 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

https://codeocean.com/2018/04/09/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/09/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/09/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/09/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/23/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/23/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/
https://codeocean.com/2018/04/23/comparison-of-multi-hardware-parallel-implementations-for-a-phase-unwrapping-algorithm/

to compute Eq. (9) with a GS iterative scheme. An advantage
of GS is that it is only necessary one array to allocate and
update the values of δr. In contrast, depending on the order in
which we loop the grid pixels, we will get different imple-
mentations of the GS method.

We implement our algorithm taking into account two
ordering ways such as the natural ordering (see Algorithm 3)
and the red-black ordering (see Algorithm 4). Note that in
both algorithms the for loops run over all image pixels r
per row. The difference is that in the red-black ordering
the pixels are considered red and black following a chess-
board pattern. We consider a pixel r ¼ ði; jÞ red if iþ j
is even and black if iþ j is odd. Then, when the red pixels
are updated in the first for loop, they only need the black
pixel values and vice versa in the second loop. With the
red–black ordering, we can implement the algorithm in
parallel using a multicore CPU, XPC, or GPU.

3.2 Implementation Details

In both frameworks, we use the OpenMP and CUDA lan-
guages to parallelize the code. In the following, we describe
the directives and functions created to parallelize Eq. (9).

OpenMP is an API for shared-memory parallel
programming.22 The “M” in OpenMP stands for “multiproc-
essing,” a term that is synonymous with shared-memory par-
allel computing. Thus, OpenMP is designed for systems in
which each thread or process can potentially have access to
all available memory. OpenMP provides a set of pragma
directives that are used to specify parallel regions, manage
threads inside parallel regions, and distribute for loops in par-
allel, among other things.

Note that, the internal for loops of Algorithm 4 can be
parallelized with OpenMP directives as follows:

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

#pragma omp for private ()
for (:,:,:){
}

}

where NUM_THREADS is the thread number to launch.
#pragma omp parallel opens a parallel region and #pragma
omp for parallelizes the for loop. In shared-memory pro-
grams, the individual threads can have private and shared
memories. Communication is usually done through shared
variables. Inside the #pragma omp for, all variables are
shared by default for all threads, then, to declare shared
and private variables we use only the private directive, to
declare the variables that are private for each thread
launched. In this way, we can process a mex-C or a C/C++
code in a multicore CPU.

Intel XPC, also known as Intel many integrated core
architecture (or Intel MIC), is a coprocessor computer archi-
tecture that offers additional power-efficient scaling, vector
support, and local memory bandwidth while maintaining the
programmability and support associated with Intel Xeon
processors.23 The XPC runs Linux and has its own IP
address. Then, we can log onto the XPC in a terminal win-
dow. There are two programming models for computing in
an XPC, the native and the offload model. In the native
model, the application runs in the coprocessor, whereas in
the offload model, the application runs a main host program
in the CPU and offloads work to the coprocessor. We use the
offload model, because our application can run the main pro-
gram from MATLAB or OpenCV and offloads the heavy
work in the coprocessor through mex-C file or the C/C++
code. Moreover, the XPC provides a wide interoperability
with OpenMP, bringing a set of specialized directives;
thus, we add the following at Algorithm 4

#pragma offload target (mic:0) inout() in ()
{

omp_set_num_threads (NUM_THREADS);
for (t=0;t<T;t++){

#pragma omp parallel
{

#pragma omp for private ()

Algorithm 3 GS with natural ordering. Computes δ; T is the maxi-
mum iteration number; cols and rows are the height and width of the
image, respectively,

1: function GS (δ;ω; ρ̃; λ; T)

2: for t ¼ 1;2; : : : ; T do

3: for r ¼ ð1;1Þ to (cols, rows) do

4: Update δr with Eq. (9);

5: end for

6: end for

7: return δ;

8: end function

Algorithm 4 GS with red–black ordering. Computes δ; T is the maxi-
mum iteration number; cols and rows are the height and width of the
image, respectively;

1: function GS RED–BLACK (δ;ω; ρ̃; λ; T)

2: for t ¼ 1;2; : : : ; T do

3: for r ¼ ð1;1Þ to (cols, rows) that are red do

4: Update δr with Eq. (9);

5: end for

6: for r ¼ ð1;1Þ to (cols, rows) that are black do

7: Update δr with Eq. (9);

8: end for

9: end for

10: return δ;

11: end function

Optical Engineering 043113-4 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

for (:,:,:){// for red pixels
}
#pragma omp for private ()
for(:,:,:){//for black pixels
}

}
}

}

where #pragma offload target(mic:0) opens a code region,
which will run in the XPC. Note that we use the attribute
inout for including variables that will be transferred from
CPU to XPC memory and vice versa. Also, we use the attrib-
ute in for including variables that will only be transferred
from CPU to XPC. The rest are pragmas of OpenMP to par-
allelize the internal for loops. These pragma directives can
be ignored, and the program should simply work in a non-
parallel mode (sequential). When a compiler recognizes
OpenMP directives (requires the OpenMP switch on the
Intel compilers), then the directives are interpreted to give
direction on how to create parallel tasks to speed the execu-
tion of a program through parallelism.

In contrast, CUDA is a language that contains a set of
instructions for processing in a GPU. The advantage of
using a GPU is that it contains multiple transistors for the
arithmetic logic unit, based on the single instruction and
multiple threads programming model, which is exploited
when multiple data are managed from one simple instruction
in parallel, similar to single instruction multiple data
(SIMD) model.24,25 In framework 1, we use the CUDA ker-
nel integration in MATLAB.26 Then, we create an execut-
able kernel from CU or PTX (parallel thread execution)
files, and run that kernel on a GPU from MATLAB. The
kernel is represented in MATLAB by a CUDAKernel
object, which can operate on MATLAB array or gpuArray
variables. We implement the kernel of Algorithm 4 as
follows:

%Copy memory from CPU to GPU
delta_dev=gpuArray (double(delta));
omega_dev=gpuArray (double(omega));
%Create the kernel functions
GS_kernel=parallel.gpu.CUDAKernel(‘solverGS.ptx’,’

solverGS.cu’);
Omega_kernel=parallel.gpu.CUDAKernel(‘Omega.

ptx’,’ Omega.cu’);
%Size of Grid and Thread Blocks
blocksize_x=32;%Fix this parameter according
blocksize_y=32; %to GPU capabilities
grid_x=ceil (rows/blocksize_x);
grid_y=ceil (cols/blocksize_y);
solverGS_kernel. ThreadBlockSize=[blocksize_x,

blocksize_y,1];
solverGS_kernel. GridSize=[grid_x,grid_y];
Omega_kernel. ThreadBlockSize=[blocksize_x,

blocksize_y,1];
Omega_kernel. GridSize=[grid_x,grid_y];

%kernel executions
for t=1:niter

[delta_dev]=feval (GS_kernel,delta_dev,omega_dev,
. . . ,0); %Red– –>0

[delta_dev]=feval (GS_kernel,delta_dev,omega_dev,
. . . ,1); %Black– –>1

[omega_dev]=feval (Omega_kernel,omega_dev,
delta_dev,. . .);

end
%Copy memory from GPU to CPU
delta=gather(delta_dev);

Note that in framework 1, using any device (an XPC or a
GPU), the number of times that the program needs to transfer
memory between CPU and the device is N × N, where N is
the number of levels for both the multigrid Algorithm 1 and
the nested Algorithm 2. To reduce this number of transfer-
ences, we develop framework 2, where we translate the
MATLAB script to C/C++ code. In this framework, we
can transfer the memory from Algorithm 2 just once.

With the implementations above described, we can run
our program in a multicore CPU, XPC, or GPU. In the
following section, we present some experiments and results
comparing the execution time in such architectures.

4 Synthetic Experimental Evaluation
The experiments were executed on two servers, the first one
(server K20) is a server with Intel(R) Xeon(R) CPU E5-2620
v2 2.10 GHz, Ubuntu 14.04 (64 bits), 24 hyperthreading
cores, a XPC 3120A 1.1-GHz with 57 cores and 6-GB
RAM, and a video card Tesla K20 with 4-GB RAM. The
second one (server K40) is a server with Intel(R) Xeon(R)
CPU E5-2690 v2 3.00 GHz, Ubuntu 14.04 (64-bits), 20
physical cores, a XPC 3120A 1.1 GHz with 57 cores and
6-GB RAM, and a video card Tesla K40 with 12-GB RAM.

Figure 1 shows a synthetic wrapped phase map with a size
of 512 × 512 pixels, which we use in our experiments. This
synthetic wrapped phase map was used in Ref. 8 to compare
the ARM method with different state-of-the-art methods.
The second and third rows of the Fig. 1 show the rewrapped
phase from the unwrapped phase of the ARM method, in
serial and parallel versions, respectively, using different
numbers of iterations T,N ¼ 5 levels of nested and multigrid
algorithms, λ ¼ 0.1 and μ ¼ π∕10. With T ¼ 2000, we note
that the rewrapped phase in the serial and parallel versions
converges to the same result; thus, in the rest of the synthetic
experiments we fix T ¼ 2000 iterations.

Tables 2 and 3 show a comparative performance of our
two respective frameworks of parallel ARM method for
server K20, on the other hand, the Table 4 shows a compar-
ative performance of the parallel ARM method framework 2
for server K40. These tables show processing times using
the double-precision floating-point format in different archi-
tectures (multicore CPU, XPC, and GPU) and different
image sizes (512 × 512, 1024 × 1024, 2048 × 2048, and
4096 × 4096). Processing time is measured in seconds
from the start of Algorithm 2 until this is finalized, which
means that we are considering both the processor work
and the memory transfer time.

With a size of image <¼ 5122, the best processing time is
obtained using the multicore CPU of server K20 (see

Optical Engineering 043113-5 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

Tables 2 and 3), whereas with a size of >¼ 10242 the best
time is obtained using the GPU. Server K20 has 24 hyper-
threading cores, but physically it has two sockets with
6 cores per socket, what means the server has 12 physical
cores and 24 logical cores. We can see that the best

performance is obtained with 12 and 8 cores. In contrast,
the server K40 has 20 cores (20C) without hyperthreading.
Note that the best times for the multicore CPU were obtained
when we fixed the NUM_THREADS to 20C (see Table 4).
When the hyperthreading is enabled, each physical core is

Fig. 1 Rewrapped phases from serial (second row) and parallel (third row) versions at different numbers
of iterations T . (a) Wrapped synthetic phase, (b) T ¼ 250, (c) T ¼ 500, (d) T ¼ 1000, and (e) T ¼ 2000.

Table 2 Processing time in seconds of our parallel ARM method framework 1 in the server K20. The smallest time per row is shown in bold.

Size of image Serial 1C

Multicore CPU XPC

GPU2C 4C 8C 12C 16C 20C 112C 224C

5122 36.5 19.3 11.2 6.8 5.7 10.1 7.1 17.9 24.6 10.8

10242 144.6 80.3 43.3 30.8 26.7 26.9 28.6 50.5 88.8 21.9

20482 814.3 449.6 249.1 154.6 155.8 158.4 150.1 316.2 360.7 66.9

40962 3529.9 1937.8 1067.9 616.3 604.6 779.3 700.3 1206.9 1291.1 248.4

Table 3 Processing time in seconds of our parallel ARM method framework 2 in the server K20. The smallest time per row is shown in bold.

Size of image Serial 1C

Multicore CPU XPC

GPU2C 4C 8C 12C 16C 20C 112C 224C

5122 33.9 20.4 10.6 5.7 5.5 7.2 5.3 30.1 32.0 6.04

10242 136.0 81.8 49.3 27.4 22.9 23.5 19.9 60.3 60.6 11.2

20482 660.8 360.6 282.0 97.8 122.5 121.4 127.1 449.8 410.6 34.2

40962 2815.1 1452.6 775.0 411.6 603.7 514.6 499.3 3210.5 3192.5 123.3

Optical Engineering 043113-6 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

divided in two logical cores, sharing resources such as the
instruction pointers, integer and floating point registers,
scheduling queues, caches, and execution units. The perfor-
mance of a parallel program using hyperthreading declines if
a logical core monopolizes some critical resource as the
floating point registers or the caches. The purpose of parallel
programming is increased performance, which is fundamen-
tally a program optimization problem. As the memory hier-
archies are radically different between platforms and the
connection of cores on a single processor varies widely,
this optimization problem is complicated.27 In our imple-
mentation, we can see that it is better to adjust NUM_
THREADS with the number of physical cores (Npc) of
CPU than with the number of logical cores, to obtain good
performance.

We observe that the results of the XPC in server K20 are
better than the serial program and comparable with the 2C
multicore option, but these are overcome by the other archi-
tectures. One might think that the bad performance of the
XPC in Table 2 is due to the memory transfers as the case
of the GPU, but, in Table 3, we can see that even with the
reduction of memory transfers, the XPC has the worst times.
However, in Table 4, we can see an improvement in the
processing time of the XPC; this is due to the directive
#pragma omp simd that we have included in the OpenMP
code. This directive transforms a loop into a loop that will
be executed concurrently using SIMD instructions to help
with the vectorization inside the XPC.23 Vectorization refers
to applying a single instruction to a group of data items of the
same data type (or vector) that can be processed at once. On
the XPC, the vector processing unit supports 512-bit vector
width, our implementation uses double-precision floating-
point format numbers; thus, eight values can be processed
simultaneously.

With respect to the GPU, we can see that the memory
transfers impact its performance (see Tables 2 and 3).
Note that between the GPUs K20 and K40 (see Tables 3
and 4), there is a little difference in the processing time,
which is due to the differences in the clock speed of both
servers and the CUDA cores, 2688 of K20 and 2880 of K40.

The speedup of a parallel program can be defined as

EQ-TARGET;temp:intralink-;e013;63;151S ¼ Ts

Tp
; (13)

where Ts is the processing time of a serial program and Tp is
the processing time of a parallel program.22 Figures 2 and 3
show the speedups of the two frameworks of parallel the
ARM method in server K20, and Fig. 4 shows the speedups
of framework 2 in server K40. In the case of multicore CPU,

Figs. 2 and 3 show that S increases when we use from 2C to
8C or 12C, while this decreases when we use 16C and 20C.
In Fig. 4, we can see an increase in S until Npc, then with
NUM_THREADS > Npc, S decreases and it is comparable

Table 4 Processing time in seconds of our parallel ARM method framework 2 in the server K40. The smallest time per row is shown in bold.

Size of image Serial 1C

Multicore CPU XPC

GPU2C 4C 8C 20C 24C 28C 112C 224C

5122 26.3 15.3 7.9 4.1 2.2 3.4 3.5 9.5 10.6 2.5

10242 107.2 62.4 31.5 16.2 7.1 12.7 11.5 24.8 23.0 7.2

20482 515.7 281.9 146.7 67.4 50.5 72.4 69.4 130.7 100.6 25.7

40962 2193.8 1047.1 536.6 273.2 208.8 285.4 273.0 716.9 636.2 99.6

Processors

2C 4C 8C 12
C

16
C

20
C

XPC-1
12

C

XPC-2
24

C
GPU

S
p

ee
d

u
p

0

5

10

15

20

25

Speedups of parallel ARM method
framework 1 in server K20

 512 × 512
1024 × 1024
2048 × 2048
4096 × 4096

Fig. 2 Evaluation of speedups of parallel ARMmethod framework 1 in
server K20, using different architectures (multicore CPU from 2C to
20C, XPC with 112C and 224C, and GPU K20) and different image
sizes.

Processors

2C 4C 8C 12
C

16
C

20
C

XPC-1
12

C

XPC-2
24

C
GPU

S
p

ee
d

u
p

0

5

10

15

20

25

Speedups of parallel ARM method
framework 2 in server K20

 512 × 512
1024 × 1024
2048 × 2048
4096 × 4096

Fig. 3 Evaluation of speedups of parallel ARMmethod framework 2 in
server K20, using different architectures (multicore CPU from 2C to
20C, XPC with 112C and 224C, and GPU K20) and different image
sizes.

Optical Engineering 043113-7 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

with the speedup of 8C. Next, in the case of the XPC, we can
see that S is almost the same that 2C multicore in Figs. 2 and
3, whereas, in Fig. 4, the speedup of XPC is over the speedup
of 4Cmulticore, this due to the included simd directive. Note
that in the case of the GPU, S has notable differences
between the different sizes of processed images. Further-
more, S is higher in framework 2 than framework 1,
reaching a speedup of approx. 23× for an image of
4096 × 4096 pixels.

5 Phase Unwrapping for Large Synthetic Aperture
Radar Interferograms

Before introducing the conducted experiments with large
SAR inteferograms, we show the generation of interferomet-
ric synthetic aperture radar (InSAR) for RADARSAT-2,
which is a Canadian satellite system equipped with a power-
ful SAR instrument. It offers powerful technical advance-
ments that enhance marine surveillance, environmental
monitoring, resource management, and mapping around
the world,. From this process, we obtain the wrapped phase
that will be later unwrapped with the ARM method.

5.1 Interferometric Synthetic Aperture Radar
Formation

InSAR exploits the phase difference between two single look
complex (SLC) images acquired over the same area from
slightly different sensor positions.7 Figure 5 shows the
processing chain for InSAR formation. The block diagram
can be applied for SLC images using the opensource
software called sentinel application platform (SNAP)28 as
follows

• Data coregistration: To create the interferogram, the
two SLC images must be coregistered into a stack.
One image is selected as the master or reference and
the other image is the slave. The pixels in the slave
image will be moved to align with the reference
image to subpixel accuracy. This ensures that each
ground target contributes to the same pixel in both
the master and slave images.

• Interferogram formation: Once the images have been
coregistered, the inteferogram is formed by cross
multiplying the master image um ¼ jumjeiϕm with
the complex conjugate of the slave image u�s ¼
jusje−iϕs . The amplitude of both images is computed
by jumjjusj, whereas the phase represents the phase dif-
ference between the two images ϕ ¼ ϕm − ϕs.

• Topographic removal: The phase difference can have
contributions from the Earth phase, which is the
phase contribution due to the Earth curvature. In the
interferometric processing, the flat Earth phase is
removed to eliminate sources of error, to be left with
only the contributor of interest, which is typically
the elevation or the displacement. Therefore, the inter-
ferogram is flattened after removing the topographic
phase.

• Phase filtering: Inteferometric phase is normally cor-
rupted with noise; therefore, to properly unwrap the
phase, the signal-to-noise ratio needs to be increased
by filtering it.

5.2 Unwrapping Synthetic Aperture Radar
Interferograms

For unwrapping SAR interferograms, we apply our ARM
method framework 2 in server K40, with λ ¼ 10 and
μ ¼ 100. In Fig. 6, panel (a) shows a wrapped SAR
phase taken from a tutorial available in Ref. 29, which
has a size of 561 × 1591 pixels. We apply our method
with N ¼ 3 and T ¼ 4000. Panels (b) and (c) show the
unwrapping and rewrapped phase, and panel (d) shows a

Processors

2C 4C 8C 20
C

24
C

28
C

XPC-1
12

C

XPC-2
24

C
GPU

S
p

ee
d

u
p

0

5

10

15

20

25

Speedups of parallel ARM method
framework 2 in server K40

 512 × 512
1024 × 1024
2048 × 2048
4096 × 4096

Fig. 4 Evaluation of speedups of parallel ARMmethod framework 2 in
server K40, using different architectures (multicore CPU from 2C to
28C, XPC with 112C and 224C, and GPU K40) and different image
sizes.

Fig. 5 InSAR formation as applied to RADARSAT-2 SLC products.

Optical Engineering 043113-8 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

mesh of the unwrapped phase, where we can see the shape of
a volcano. The processing time is ∼105.2 s using the serial
code, 17.7 s using the XPC (a speedup of ∼6×), 4.5 s using
OpenMP with 20C (a speedup of ∼23×), and 7.5 s using the
GPU (a speedup of ∼14×).

In contrast, the panel (a) of Fig. 7 shows a huge wrapped
SAR phase with size of 8000 × 10500 pixels, which we cre-
ate from two SLC RADARSAT-2 images using SNAP and
following the steps above described for InSAR formation.
The images were acquired on May 4, 2008 and May 28,
2008, over the Phoenix area. Here, we are interested in
full-resolution SAR inteferograms, but a subset around a par-
ticular area in which you are interested can be created to
reduce the amount of processing needed. For unwrapping
the wrapped SAR phase, we fix N ¼ 7 and T ¼ 1000.
Panels (b) and (c) show the unwrapped and rewrapped
phase, and panels (d) and (e) show the unwrapped phase
and mesh of the region bounded by the red rectangle of
size of 801 × 2001 pixels. The processing time is ∼6216.8 s
using the serial code, 739.7 s using OpenMP with 20C
(a speedup of ∼8×), and 397.4 s using the GPU (a speedup
of ∼16×). In this experiment, the memory of the XPC was
insufficient.

6 Remarks and Conclusions
In this work, different parallel architectures were used, com-
paring its processing time for solving a phase unwrapping
problem. We translate the whole code from MATLAB to

C/C++ to parallelize the method and improve the speedup,
avoiding several copies of memory between CPU-RAM and
the coprocessors XPC or GPU RAM. For our parallel imple-
mentation using a multicore CPU, it is important to know the
number of physical cores, because with this number, we
obtain the highest speedup between the possible configura-
tions for launching threads in the CPU. In the case of XPC, it
is notable that its speedup can be improved if we consider the
vectorization; however, it is very poor compared with the
rest. Although it is easier to translate a serial program to par-
allel using OpenMP than CUDA, we can see that the GPU
remains a powerful tool, with which it is possible to obtain
high speedup values above 15×, considering image sizes
greater than 10242 pixels such as SAR interferograms,
and thus it is worthwhile to invest time in to translate the
code using CUDA.

As future work, we think that another interesting compari-
son could be using OpenCL, to create a kernel function,
which can be offloaded in the different architectures here
used. We want to improve the performance of our GPU
implementation using texture and unified memory. More-
over, we want to compare the ARM method with another
one (such as Snaphu30) that is used to process SAR
interferograms.

References

1. A. Moreira et al., “A tutorial on synthetic aperture radar,” IEEE Geosci.
Remote Sens. Mag. 1(1), 6–43 (2013).

Fig. 6 Unwrapped phase from SAR interferogram taken from Ref. 29.
(a) Wrapped phase, (b) unwrapped phase, (c) rewrapped phase, and
(d) mesh of unwrapped phase.

Fig. 7 Unwrapped phase from our SAR interferogram taken over
Phoenix area. (a) SAR wrapped phase, (b) unwrapped phase,
(c) rewrapped phase, (d) a region (red rectangle) of the unwrapped
phase, and (e) mesh of unwrapped phase region (red rectangle).

Optical Engineering 043113-9 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

https://doi.org/10.1109/MGRS.2013.2248301
https://doi.org/10.1109/MGRS.2013.2248301

2. D. Massonnet and K. L. Feigl, “Radar interferometry and its application
to changes in the earth’s surface,” Rev. Geophys. 36(4), 441–500
(1998).

3. R. Bürgmann, P. A. Rosen, and E. J. Fielding, “Synthetic aperture radar
interferometry to measure earth’s surface topography and its deforma-
tion,” Annu. Rev. Earth Planet. Sci. 28(1), 169–209 (2000).

4. European Space Agency (ESA), “Sentinel online,” (2017), https://
sentinel.esa.int/web/sentinel/home/

5. R. Bamler and P. Hartl, “Synthetic aperture radar interferometry,”
Inverse Prob. 14(4), R1–R54 (1998).

6. G. Franceschetti, S. Merolla, and M. Tesauro, “Phase quantized SAR
signal processing: theory and experiments,” IEEE Trans. Aerosp.
Electron. Syst. 35(1), 201–214 (1999).

7. M. Simons and P. Rosen, “Interferometric synthetic aperture radar geod-
esy,” in Treatise on Geophysics, G. Schubert, Ed., 2nd ed., Vol. 3,
pp. 339–385, Elsevier, Oxford (2015).

8. M. Rivera, F. J. Hernandez-Lopez, and A. Gonzalez, “Phase unwrap-
ping by accumulation of residual maps,” Opt. Lasers Eng. 64, 51–58
(2015).

9. K. H. Tsoi and W. Luk, “Axel: a heterogeneous cluster with FPGAs and
GPUs,” in Proc. of the 18th Annual ACM/SIGDA Int. Symp. on Field
Programmable Gate Arrays (FPGA), pp. 115–124, ACM, New York
(2010).

10. M. A. Gdeisat et al., “Aiding phase unwrapping by increasing the num-
ber of residues in two-dimensional wrapped-phase distributions,” Appl.
Opt. 54(34), 010073 (2015).

11. J. C. de Souza, M. E. Oliveira, and P. A. M. dos Santos, “Branch-cut
algorithm for optical phase unwrapping,” Opt. Lett. 40, 3456–3459
(2015).

12. M. Arevalillo-Herraez, F. R. Villatoro, and M. A. Gdeisat, “A robust and
simple measure for quality-guided 2D phase unwrapping algorithms,”
IEEE Trans. Image Process. 25, 2601–2609 (2016).

13. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping:
Theory, Algorithms, and Software, Wiley-Interscience, New York
(1998).

14. B. R. Hunt, “Matrix formulation of the reconstruction of phase values
from phase differences,” J. Opt. Soc. Am. 69, 393–399 (1979).

15. D. C. Ghiglia and L. A. Romero, “Robust two-dimensional weighted
and unweighted phase unwrapping that uses fast transforms and itera-
tive methods,” J. Opt. Soc. Am. A 11, 107–117 (1994).

16. J. L. Marroquin and M. Rivera, “Quadratic regularization functionals for
phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995).

17. M. Rivera et al., “Fast algorithm for integrating inconsistent gradient
field,” Appl. Opt. 36(32), 8381–8390 (1997).

18. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial,
2nd ed., Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania (2000).

19. M. Rivera, “Phase unwrapping by accumulation of residual maps,”
MathWorks (2015), https://www.mathworks.com/matlabcentral/
fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-
maps

20. H. Sutter and J. Larus, “Software and the concurrency revolution,”
Queue 3, 54–62 (2005).

21. J. W. Demmel, Applied Numerical Linear Algebra, Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsylvania (1997).

22. P. Pacheco, An Introduction to Parallel Programming, 1st ed., Morgan
Kaufmann Publishers Inc., San Francisco, California (2011).

23. J. Jeffers and J. Reinders, Intel Xeon Phi Coprocessor High Perform-
ance Programming, 1st ed., Morgan Kaufmann Publishers Inc., San
Francisco, California (2013).

24. D. B. Kirk and W. H. Wen-Mei, Programming Massively Parallel
Processors: A Hands-on Approach, Applications of GPU Computing
Series, 1st ed., Morgan Kaufmann Publishers Inc., San Francisco,
California (2010).

25. J. Cheng, M. Grossman, and T. McKercher, Professional CUDA C
Programming, EBL-Schweitzer, Wiley, Indianapolis, Indiana(2014).

26. MathWorks-Inc., “Run CUDA or PTX code on GPU,” (2015), https://
www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html.

27. W.-M. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency chal-
lenge,” IEEE Des. Test Comput. 25, 312–320 (2008).

28. European Space Agency (ESA), “Sentinel application platform
(SNAP),” (2016), https://step.esa.int/main/toolboxes/snap/

29. SAR-EDU, “SAR-EDU remote sensing education initiative,” DEM
Generation with MATLAB (2017), https://saredu.dlr.de/unit/dem_
matlab.

30. C. Chen and H. Zebker, “Phase unwrapping for large SAR interfero-
grams: statistical segmentation and generalized network models,”
IEEE Trans. Geosci. Remote Sens. 40, 1709–1719 (2002).

Francisco Javier Hernandez-Lopez received his MSc and DSc
degrees in computer science from the Center for Research in
Mathematics (CIMAT), México, in 2009 and 2014 respectively. Since
2014, he is in the Computer Science Department at the CIMAT,
Mérida, México. His main interests are in the area of computer vision,
and the development of efficient algorithms using parallel computing.
He is a fellow of the National System of Researchers (SNI) of the
Mexican Government.

Mariano Rivera received his DSc degree in optics from the Center for
Research in Optics (CIO), León, México, in 1997. Since 1997, he has
been with the Computer Science Department, CIMAT, México. He is
an academic dean of the National Supercomputing Center, Institute
Potosino for Scientific and Technological Research (IPICYT), México.
His research interests include computer vision, image processing,
numerical optimization, machine learning, and optical metrology. He
is a fellow of the National Researcher System (SNI) of the Mexican
Government.

Adan Salazar-Garibay is a Mexican–French PhD researcher at
CONACYT, Mexico. He holds a PhD in computer science and auto-
matic control from INRIA Sophia Antipolis and cole des Mines de
Paris (Mines Paris Tech) since 2010. His expertise area is in image
processing. Publications regarding the outcomes of the research work
were presented in some of the main international conferences in
robotics and computer vision. His current research interests include
3-D reconstruction and SAR image processing.

Ricardo Legarda-Sáenz received his PhD in optics from the Centro
de Investigaciones en Optica, México, in 2000. Since 2004, he has
been an associate professor at Universidad Autónoma de Yucatán.
His current interests are image processing applied to fringe pattern
analysis, moire and fringe projection techniques, and the develop-
ment of automatic methods for optical metrology. Since 2016, he is
senior member of SPIE.

Optical Engineering 043113-10 April 2018 • Vol. 57(4)

Hernandez-Lopez et al.: Comparison of multihardware parallel implementations for a phase unwrapping algorithm

https://doi.org/10.1029/97RG03139
https://doi.org/10.1146/annurev.earth.28.1.169
https://sentinel.esa.int/web/sentinel/home/
https://sentinel.esa.int/web/sentinel/home/
https://sentinel.esa.int/web/sentinel/home/
https://sentinel.esa.int/web/sentinel/home/
https://doi.org/10.1088/0266-5611/14/4/001
https://doi.org/10.1109/7.745692
https://doi.org/10.1109/7.745692
https://doi.org/10.1016/j.optlaseng.2014.07.005
https://doi.org/10.1364/AO.54.010073
https://doi.org/10.1364/AO.54.010073
https://doi.org/10.1364/OL.40.003456
https://doi.org/10.1109/TIP.2016.2551370
https://doi.org/10.1364/JOSA.69.000393
https://doi.org/10.1364/JOSAA.11.000107
https://doi.org/10.1364/JOSAA.12.002393
https://doi.org/10.1364/AO.36.008381
https://www.mathworks.com/matlabcentral/fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-maps
https://www.mathworks.com/matlabcentral/fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-maps
https://www.mathworks.com/matlabcentral/fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-maps
https://www.mathworks.com/matlabcentral/fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-maps
https://www.mathworks.com/matlabcentral/fileexchange/48094-phase-unwrapping-by-accumulation-of-residual-maps
https://doi.org/10.1145/1095408
https://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html
https://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html
https://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html
https://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html
https://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu.html
https://doi.org/10.1109/MDT.2008.110
https://step.esa.int/main/toolboxes/snap/
https://step.esa.int/main/toolboxes/snap/
https://step.esa.int/main/toolboxes/snap/
https://saredu.dlr.de/unit/dem_matlab
https://saredu.dlr.de/unit/dem_matlab
https://saredu.dlr.de/unit/dem_matlab
https://saredu.dlr.de/unit/dem_matlab
https://doi.org/10.1109/TGRS.2002.802453

