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Sentiment analysis is a text mining task that determines the polarity of a given text, i.e., its positive-
ness or negativeness. Recently, it has received a lot of attention given the interest in opinion mining
in micro-blogging platforms. These new forms of textual expressions present new challenges to analyze
text because of the use of slang, orthographic and grammatical errors, among others. Along with these
challenges, a practical sentiment classifier should be able to handle efficiently large workloads.

The aim of this research is to identify in a large set of combinations which text transformations
(lemmatization, stemming, entity removal, among others), tokenizers (e.g., word n-grams), and token-
weighting schemes make the most impact on the accuracy of a classifier (Support Vector Machine)
trained on two Spanish datasets. The methodology used is to exhaustively analyze all combinations of
text transformations and their respective parameters to find out what common characteristics the best
performing classifiers have. Furthermore, we introduce a novel approach based on the combination of
word-based n-grams and character-based g-grams. The results show that this novel combination of words
and characters produces a classifier that outperforms the traditional word-based combination by 11.17%
and 5.62% on the INEGI and TASS’15 dataset, respectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the production of textual documents in social
media has increased exponentially; for instance, up to April 2016,
Twitter has 320 million active users, and Facebook has 1590 mil-
lion users.2 In social media, people share comments about many
disparate topics, i.e., events, persons, and organizations, among
others. These facts have had the result of seeing social media as
a gold mine of human opinions, and consequently, there is an in-
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creased interest in doing research and business activities around
opinion mining and sentiment analysis fields.

Automatic sentiment analysis of texts is one of the most impor-
tant tasks in text mining, where the goal is to determine whether a
particular document has either a positive, negative or neutral opin-
ion>. Determining whether a text document has a positive or nega-
tive opinion is becoming an essential tool for both public and pri-
vate companies, (Liu, 2015; Peng, Zuo, & He, 2008). Given that it
is a useful tool to know what people think about anything; so, it
represents a major support for decision-making processes (for any
level of government, marketing, etc.) (Pang & Lee, 2008).

Sentiment analysis has been traditionally tackled as a classifi-
cation task where two major problems need to be faced. Firstly,
one needs to transform the text into a suitable representation, this
is known as text modeling. Secondly, one needs to decide which
classification algorithm to use; one of the most widely used is Sup-

3 Albeit, there are other variations considering intermediate levels for sentiments,
e.g. more positive or less positive
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port Vector Machines (SVM). This contribution focus on the former
problem, i.e., we are interested in improving the classification by
finding a suitable text representation.

Specifically, the contribution of this research is twofold. Firstly,
we parametrize our text modelling technique that uses differ-
ent text transformations (lemmatization, stemming, entity re-
moval, among others), tokenizers (e.g., word n-grams), and token-
weighting schemes (Table 3 contains all the parameters explored).
This parametrization is used to exhaustively evaluate the entire
configurations space to know those techniques that produce the
best SVM classifier on two sentiment analysis corpus written in
Spanish. Counterintuitively, we found that the complexity of tech-
niques used in the pre-processing step is not correlated with the
final performance of the classifier, e.g., a classifier using lemmati-
zation, which is one of the pre-processing techniques having the
greatest complexity, might not be one of the systems having the
highest performance.

Secondly, we propose a novel approach based on the combi-
nation of word-based n-grams and character-based g-grams. This
novel combination of words and characters produces a classifier
that outperforms the traditional word-based combination by 11.17%
and 5.62% on the INEGI and TASS'15 dataset, respectively. Here-
after, we will use n-words to refer to word-based n-grams, and q-
grams to character-based g-grams just to make a clear distinction
between these techniques.

The rest of the manuscript is organized as follows.
Section 2 deals with literature review. The text transformations
are described in Section 3, meanwhile the parameters settings and
definition of the problem are presented on Section 4. Section 5 de-
scribes our experimental results. Finally, Sections 6 and 7 present
the discussion and conclusions of our results along with possible
directions for future work.

2. Related work

The sentiment analysis task has been widely studying due to
the interest to know the people’s opinions and feelings about
something, particularly in social media. This task is commonly
tackled in two different ways. The first one involves the use of
static resources that summarize the sense or semantic of the task;
these knowledge databases contain mostly affective lexicons. These
lexicons are created by experts, in psychology or by automated
processes, that perform the selection of features (words) along
with a corpus of labeled text as done in Ghiassi, Skinner, and Zim-
bra (2013). Consequently, the task is solved by trying to detect how
the affective features are used in a text, and how these features can
be used to predict the polarity of a given text.

The alternative approach states the task as a text classification
problem. This includes several distinguished parts like the pre-
processing step, the selection of the vectorization and weighting
schemes, and also the classifier algorithm. So, the problem consists
of selecting the correct techniques in each step to create the sen-
timent classifier. Under this approach, the idea is to process the
text in a way that the classifier can take advantage of the fea-
tures to solve the problem. Our contribution focus in this later
approach; we describe the best way to pre-process, tokenize, and
vectorize the text, based on a fixed set of text-transformation func-
tions. For simplicity, we fix our classifier to be Support Vector Ma-
chines (SVM). SVM is a classifier that excels in high dimensional
datasets as is the case of text classification, (Joachims, 1998). This
section reviews the related literature.

There are several works in the sentiment analysis literature
which use several representations; such as dictionaries (Alam, Ryu,
& Lee, 2016; Khan, Qamar, & Bashir, 2016); text content and social
relations between users (Wu, Huang, & Song, 2016); relationships
between meanings of a word in a corpus (Razavi, Matwin, Koninck,

& Amini, 2014); co-occurrence patterns of words (Saif, He, Fernan-
dez, & Alani, 2016), among others.

Focusing on the n-grams technique, a method that considers
the local context of the word sequence and the semantic of the
whole sentence is proposed in Cui, Shi, and Chen (2015). The lo-
cal context is generated via the “bag-of-n-words” method, and the
sentence’s sentiment is determined based on the individual con-
tribution of each word. The word embedding is learned from a
large monolingual corpus through a deep neural network, and the
n-words features are obtained from the word embedding in com-
bination with a sliding window procedure.

A hybrid approach that uses n-gram analysis for feature extrac-
tion together with a dynamic artificial neural network for senti-
ment analysis is proposed in Ghiassi et al. (2013). Here, a dataset
over 10,000,000 of tweets, related to Justin Bieber topic, was used.
As a result, a Twitter-specific lexicon with a reduced feature set
was obtained.

The work presented in Han, Guo, and Schuetze (2013) proposes
an approach for sentiment analysis which combines a SVM clas-
sifier and a wide range of features like bag-of-word (1-words, 2-
words) and part-of-speech (POS) features, etc., as well as votes de-
rived from character n-words language models to achieve the fi-
nal result. The authors concluded that lexical features (1-words, 2-
words) produce the better contributions.

In Tripathy, Agrawal, and Rath (2016) different classifiers and
representations were applied to determine the sentiment in movie
reviews, taken from internet blogs. The classifiers tested were
Naive Bayes, maximum entropy, stochastic gradient descent, and
SVM. These algorithms use n-words, for n in {1, 2, 3} and all the
combinations. Here, the results show that the value of n increases
the classification accuracy decreases, i.e., using 1-words and 2-
words the result achieved is better than using 3-words, 4-words,
and 5-words.

Regarding the use of g-grams; in Aisopos, Papadakis, and Var-
varigou (2011) a method that captures textual patterns is intro-
duced. This method creates a graph, whose nodes correspond to g-
grams of a document and their edges denoted the average distance
between them. A comparative analysis on data from Twitter is per-
formed between three representation models: term vector model,
g-grams, and g-grams graphs. The authors found that vector mod-
els are faster, but g-grams (especially 4-grams) perform better in
terms of classification quality.

With the purpose to attend sentiment analysis in Spanish
tweets, a number of works has been presented in the literature,
e.g. several sizes of n-grams and some polarity lexicons combined
with a Support Vector Machine (SVM) was used in Almeida (2015).
Another approach which uses polarity lexicons with a number of
features related to n-words, part-of-speech tag, hashtags, emoti-
con and lexicon resources is described in Araque, Corcuera, Roman,
Iglesias, and Sanchez-Rada (2015).

Features related to lexicons and syntactic structures are com-
monly used, for example, (Alvarez-Lopez et al., 2015; Borda & Sal-
adich, 2015; Camara, Cumbreras, Martin-Valdivia, & Lépez, 2015;
de la Vega & Vea-Murguia, 2015; Deas, Biran, McKeown, & Rosen-
thal, 2015). In the other hand, features related to word vectoriza-
tion, e.g. Word2Vec and Doc2Vec, are also used in several works,
such as Diaz-Galiano and Montejo-Raez (2015); Valverde, Tejada,
and Cuadros (2015).

Following with the Spanish language, in the most recent
TASS (Taller de Andlisis de Sentimientos '16) competition, some
works presented still using polarity dictionaries and vector-
ization approach; such is the case of Casasola Murillo and
Marin Raventds (2016), where an adaptation of Turney’s dictio-
nary (Turney, 2002) over 5 million of Spanish tweets were gen-
erated. Furthermore, (Casasola Murillo & Marin Raventds, 2016) in
the step of vectorization uses n-grams and skip-grams in combi-
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input text transformation split text into | d‘i;i;n;fge output
text pipeline tokens weights vector

Fig. 1. Generic treatment of input text to obtain the input vectors for the classifier.

nation with this polarity dictionary. Quirés, Segura-Bedmar, , and
Martinez (2016) proposes the use of word embedding with SVM
classifier. Despite the explosion of words using word embeddings,
the classical word vectorization is still in use, (Montejo-Raez &
Diaz-Galiano, 2016).

A new approach is using ensembles or a combination of sev-
eral techniques and classifiers, e.g., the work presented in Ceréon-
Guzman and de Cali (2016) proposes an ensemble built on the
combination of systems with the lowest correlation between them.
Hurtado and Pla (2016) presents another ensemble method where
the Tweetmotif’'s tokenizer, (O’Connor, Krieger, & Ahn, 2010), is
used in conjunction with Freeling (Padré & Stanilovsky, 2012a).
These tools create a vector space that is the input for an SVM clas-
sifier.

It can be seen that one of the objectives of the related work is
to optimize the number of n-words or g-grams (almost tackled as
independent approaches), to increase performance; clearly, there is
not a consensus. This lack of agreement motivates us to perform
an extensive experimental analysis of the effect of the parameters
(including n and q values), and so, we determined the best param-
eters on the Twitter databases employed.

3. Text representation

Natural Language Processing (NLP) is a broad and complex
area of knowledge having many ways to represent an input
text (Giannakopoulos, Mavridi, Paliouras, Papadakis, & Tserpes,
2012; Sammut & Webb, 2011). In this research, we select the
widely used vector representation of a text given its simplicity and
powerful representation. Fig. 1 depicts the procedure used to trans-
form a text input into a vector. There are three main blocks: the
first one transforms the text into another text representation, then
the text is tokenized, and, finally, the vector is calculated using a
weighting scheme. The resulting vectors are the input of the clas-
sifier.

In the following subsections, we described the text transforma-
tion techniques used which have a counterpart in many languages,
the proper implementation of them rely heavily on the targeted
language, in our case study the Spanish language. The interested
reader looking for solutions in a particular language is encouraged
to follow the relevant linguistic literature for its objective language,
in addition to the general literature in NLP (Bird, Klein, & Loper,
2009; Jurafsky & Martin, 2009; Sammut & Webb, 2011).

3.1. Text transformation pipeline

One of the contributions of this manuscript is to measure the
effects that each different text transformation has on the perfor-
mance of a classifier. This subsection describes the text transforma-
tions explored whereas the particular parameters of these transfor-
mations can be seen in Table 3.

3.1.1. TFIDF (tfidf)

In the vector representation, each word, in the collection, is as-
sociated with a coordinate in a high dimensional space. The nu-
meric value of each coordinate is sometimes called the weight of
the word. Here, tf x idf (Term Frequency-Inverse Document Fre-
quency) (Baeza-Yates & Ribeiro-Neto, 2011) is used as bootstrap-
ping weighting procedure. More precisely, let D = {D;,D,, ..., Dy}

be the set of all documents in the corpus, and fi, be the frequency
of the word w in document D;. tf,, is defined as the normalized
frequency of w in D;
R
maXueD,{fu}
In some way, tf describes the importance of w, locally in D;. On the
other hand, idf gives a global measure of the importance of w;

idfy = log N

" {Di | fi, > 0}

The final product, tf x idf, tries to find a balance between the
local and the global importance of a term. It is common to use
variants of tf and idf instead of the original ones, depending in
the application domain (Sammut & Webb, 2011). Let v; be the vec-
tor of D;, a weighted matrix TFIDF of the collection D is created
by concatenating all individual vectors, in some consistent order.
Using this representation, a number of machine learning meth-
ods can be applied; however, the plain transformation of text to
TFIDF poses some problems. On one hand, all documents will con-
tain common terms having a small semantic content such as ar-
ticles and determiners, among others. These terms are known as
stopwords. The bad effects of stopwords are controlled by TFIDF,
but most of them can be directly removed since they are fixed for
a given language. On the other hand, after removing stopwords,
TFIDF will produce a very high dimensional vector space, O(N)
in Twitter, since new terms are commonly introduced (e.g. mis-
spellings, URLs, hashtags). This will rapidly yield to the Curse of Di-
mensionality, which makes hard to learn from examples since any
two random vectors will be orthogonal with high probability. From
a more practical point of view, a high dimensional representation
will also impose huge memory requirements, at the point of being
impossible to train a typical implementation of a machine learning
algorithm (not being designed to use sparse vectors).

3.1.2. Stopwords (del-sw)

In many languages, like Spanish, there is a set of extremely
common words such as determiners or conjunctions (the or and)
which help to build sentences but do not carry any meaning them-
selves. These words are known as Stopwords, and they are removed
from the text before any attempt to classify them. A stop list is
built using the most frequent terms from a huge document collec-
tion. We used the Spanish stop list included in NLTK Python pack-
age (Bird et al., 2009).

3.1.3. Spelling

Twitter messages are full of slang, misspelling, typographical
and grammatical errors among others; however, in this study, we
focus only on the following transformations:

Punctuation (del-punc). This parameter considers the use of
symbols such as question mark, period, exclamation point,
commas, among other spelling marks.

Diacritic (del-diac). The Spanish language is full of diacritic sym-
bols, and its wrong usage is one of the main sources of
orthographic errors in informal texts. Thus, this parameter
considers the use or absence of diacritical marks.
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tgm — te quiero mucho (I love you so much),
compu — computadora (computer).

Fig. 2. Expansion of colloquial words and abbreviations.

Symbol reduction (del-d1, del-d2). Usually, twitter messages use
repeated characters to emphasize parts of the word to at-
tract user’s attention. This aspect makes the vocabulary ex-
plodes. Thus, we applied two strategies to deal with these
phenomena: the first one replaces the repeated symbols by
one occurrence of the symbol, and the second one replaces
the repeated symbols by two occurrences to keep the word
emphasize at the minimal level.

Case sensitive (Ic). This parameter considers letters to be nor-
malized in lowercase or to keep the original text. The aim is
to cut the words that are the same in uppercase and lower-
case.

3.14. Stemming (stem)

Stemming is a heuristic process in Information Retrieval field
that chops off the end of words and often includes the removal
of derivational affixes. This technique uses the morphology of the
language coded in a set of rules; to find out word stems and re-
duce the vocabulary collapsing derivationally related words. In our
study, we use the Snowball Stemmer for the Spanish language im-
plemented in NLTK package (Bird et al., 2009).

3.1.5. Lemmatization (lem)

Lemmatization process is a complex task from Natural Language
Processing that determines the lemma of a group of word forms,
i.e,, the dictionary form of a word. For example, the words went
and goes are the verb conjugations of the verb go; and these words
are grouped under the same lemma go. To apply this process, we
use Freeling tool (Padré & Stanilovsky, 2012b) as Spanish lemma-
tizer. All texts are prepared by the Error correction process before
applying lemmatization to obtain the best results of part-of-speech
identification.

3.1.5.1. Error correction. Freeling is a tool for text analysis, but the
assumption is that text is well-written. However, language used
in Twitter is very informal, with slang, misspellings, new words,
creative spelling, URLs, specific abbreviations, hashtags (which are
especial words for tagging in Twitter messages), and emoticons
(which are short strings and symbols that express different emo-
tions). These problems are treated to prepare and standardize
tweets for the lemmatization stage to get the best results. All
words in each tweet are checked to be a valid Spanish word or
are reduced according to the rules for Spanish word formation.

In general, words or tokens with invalid duplicated vowels or
consonants are reduced to valid or standard Spanish words, e.g.,
an approach based on Spanish dictionary, a statistical model for
common double letters, and heuristic rules for common interjec-
tions. In general, the duplicated vowels or consonants are removed
from the target word; the resulting word is looked up in a Span-
ish dictionary (approximately 550,000 entries) to be validated, it
is included in Freeling. For words that are not in the dictionary
are reduced at least with valid rules for Spanish word formation.
Also, colloquial words and abbreviations are transformed using a
regular expression based on a dictionary of those sort of words,
Fig. 2 illustrates some rules. The text on the left side of the ar-
row is replaced by the text of the right side. Twitter tags such as
user names, hashtags (topics), URLs, and emoticons are handled as
special tags in our representation to keep the structure of the sen-
tence.

In Fig. 3, we can see the lemmatized text after applying Freel-
ing. As we mentioned, the text is prepared with the Error cor-
rection step (see Fig. 3(a)), then Freeling is applied to normal-
ize words. Fig. 3(b) shows Freeling’s output where each token
has the original word followed by the slash symbol and its lex-
ical information. The lexical information can be read as follows;
for instance, the token orgulloso/AQOMSO (proud) stands for
adjective as part of speech (AQ), masculine gender (M), and sin-
gular number (S); the token querer/VMIP1S0 (to want) stands
for lemmatized main verb as part of speech (VM), indicative
mood (I), present time (P), singular form of the first person (1S);
positive_tag/NTE0OO0OO stands for noun tag as part of speech,
and so on.

Lexical information is used to identify entities, stopwords, con-
tent words among others, it depends on the settings of the other
parameters. The words are filtered based on heuristic rules that
take into account the lexical information shown in Fig. 3(b). Finally,
lexical information is removed in order to get the lemmatized text
depicted on Fig. 3(c).

3.1.6. Negation (neg)

Spanish negation markers might change the polarity of the
message. Thus, we attached the negation clue to the nearest word,
similar to the approaches used in Sidorov et al. (2013). A set of
rules was designed for common Spanish negation structures that
involve negation markers, namely, no (not), nunca, jamds (never),
and sin (without). The rules are processed in order, and, when one
of them matches, the remaining rules are discarded. We have two
sorts of rules; it depends on the input text. If the text is not parsed
by Freeling, a few rules (regular expressions) are applied to negate
the nearest word to the negation marker using only the informa-
tion on the text, e.g., avoiding pronouns and articles. The second
approach uses a set of fine-grained rules to take advantage of the
lexical information, approximately 50 rules were designed consid-
ering the negation markers. The negation marker is attached to the
closest word to the negation marker. The set of negation rules are
available®.

In the box below, Pattern 1 and Pattern 2 are examples of nega-
tion rules (regular expressions). A rule consists of two parts: the
left side of the arrow represents the text to be matched, and the
right side of the arrow is the structure to be replaced. All rules are
based on a linguistic motivation taking into account lexical infor-
mation.

For example, in the sentence El coche no es ni bonito ni espacioso
(The car is neither nice nor spacious), the negation marker no is at-
tached to its two adjectives no_bonito (not nice) and no_espacioso
(not spacious), as it is showed in Pattern 1, the negation marker is
attached to group 3 (\3) and group 4 (\4) that stand for adjective
positions because of the coordinating conjunction ni. The number
of group is identified by parenthesis in the rule from left to right.
Negation markers are attached to content words (nouns, verbs, ad-
jectives, and some adverbs), e.g., ‘no seguir’ (do not follow) is re-
placed by ‘no_seguir’, ‘no es bueno’ (it is not good) is replaced by
‘es no_bueno’, ‘sin comida’ (without food) is replaced by ‘no_comida’.
Fig. 4 exemplifies a pair of these negation rules.

3.1.7. Emoticon (emo)

In the case of emotions, we classify more than 500 popular
emoticons, including text emoticons, and the whole set of emoti-
cons (close to 1600) defined by Unicode (2016) into three classes:
positive, negative or neutral, which are replaced by a polarity word
or definition associated to the emoticon according to the Unicode
standard. The emoticons considered as positive are replaced by the

4 http://ws.ingeotec.mx/~sadit/
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Original text:

Q@username ¢l siempre estard contigo, muy orgulloso de tiiiii y del graaaaannn ser
humano que eres :) ... Tgm!!! Buen jueves.

(@Qusername he will always be with you, so proud of you and great human being that
you are :) ... ILY!!!! good Thursday.)

After Error Correction step:

user_tag €l siempre estard contigo muy orgulloso de ti y del gran ser humano que
eres positivo_-tag te quiero mucho Buen jueves

(user_tag he will always be with you, so proud of you and great human being that
you are positive_tag I love you good Thursday.)

(a) Error correction step

user_tag/NT00000 é1/PP3MS000 siempre/RG estar/VAIF3S0 contigo/PP2CS000

muy/RG orgulloso/AQOMSO0 de/SPS00 ti/PP2CS000 y/CC de/SPS00 el/DAOMSO
gran/AQOCSO ser/NCMSO00 humano/AQOMSO que/PROCNOOO ser/VSIP2SO
positive_tag/NTE0000 te/PP2CS000 querer/VMIP1S0 mucho/DIOMSO bueno/AQOMSO
jueves/NCMNOOO

(b) The output of a Spanish sentence parsed with Freeling

Q@username €l siempre estar contigo muy orgulloso de ti y de el gran ser humano que ser
positive_tag te querer mucho bueno jueves

( @username he always be with you, so proud of you and the great human being that you be
positive I love you good thursday.)

(c) After removing lexical information

Fig. 3. A step-by-step lemmatization of a tweet.

— Pattern 1: el coche no es ni bonito ni espacioso (the car is neither nice nor spacious)
(no/RN) \s+(ser/VS\w+) \s+ni/CC\s+(\w+/AQ\w+) \s+ni/CC\s+(\w+/AQ\w+) — \2 no_\3 y/CC no_\4

— Pattern 2: no es (de) madera (X is not made of wood)
(no/RN) \s+(ser/VS\w+) \s+(\w+/S\w+\s+)? \w+/N["TP]\w+) — \2 \3 no_\4

Fig. 4. An example of negation rules.
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Table 1
An excerpt of the mapping table from Emoticons to its
polarity words.

1) :D :P —  positive

i ( :=( 2 ( —  negative
=l U.U -.- —  neutral
emoticon without polarity = —  unicode-text

word positive, negative emoticons are replaced by the word nega-
tive, neutral emotions are replaced by the word neutral. Emoticons
that do not have a polarity, or are ambiguous, are replaced by the
associated Unicode text. Table 1 shows an excerpt of the dictionary
that maps emoticons to their corresponding polarity class.

3.1.8. Entity (del-ent)

We consider entities to be proper names, hashtags, urls or
nicknames. However, nicknames (see usr parameter, Table 3) is a
particular feature in Twitter messages; thus, user names is an-
other parameter to see the effect on the classification system. User
names, urls and numbers (see url, num parameters, Table 3) could
be grouped under an especial generic name. Entities such as user
names and hashtags are identified directly by its corresponding
especial symbol @ and #, and proper names are identified using
Freeling, the lexical information used to identify a proper name is
“NP0000".

3.1.9. Word-based n-grams (n-words)

N-words are widely used in many NLP tasks, and they have
also been used in sentiment analysis by Cui et al. (2015);
Sidorov et al. (2013). N-words are word sequences. To compute
the n-words, the text is tokenized and n-word are calculated
from tokens. NLTK Tokenizer is used to identified word to-
kens. For example, let T=°‘‘the lights and shadows
of your future’’, its 1-words (unigrams) are each word
alone, and its 2-words (bigrams) set are the sequences of
two words, the set (WJ), and so on. For example, let W] =
{the lights, lights and, and shadows, shadows of, of your,
your future}, then, given a text of m words, we obtain a set
with at most m —n + 1 elements. Generally, n-words are used up
to 2 or 3-words because it is uncommon to find good matches
of word sequences greater than three or four words (Jurafsky &
Martin, 2009).

3.1.10. Character-based q-grams (q-grams)

In addition to the traditionally n-words representation, we rep-
resent the resulting text as g-grams. A g-grams is an agnostic lan-
guage transformation that consists in representing a document by
all its substring of length q. For example, let T = abra_cadabra, its
3-grams set are

Q3T:{abr, bra, ra_, a_c, _ca, aca, cad, ada, dab},
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original text:

after text transformation:

pesim aut :( _user fal fren y sistem de entreten ; lo no_compr
computed 1l-word:

{pesim, aut, :(, _user, fal, fren, y, sistem, de, entreten, ;, lo, no_compr }

(a) An example of configuration for INEGI benchmark for n-words (i.e., 1-word)

original text:

after text transformation:

pesiiiimo auto _negativo _user fallan frenos y sistema de entretenimiento ; lo no_compren
computed 4-grams:

{_pes, pesi, esii, siii, iiii, iiim, iimo, imo-, mo_a, o-au, -aut, auto, uto, to__, o__n, __ne, _neg,
nega, egat, gati, ativ, tivo, ivo_, vo__, o__u, __us, _use, user, ser_, er_f, r_fa, _fal, fall, alla, llan,
lan_, an_f, n_fr, _fre, fren, reno, enos, nos_, os_y, s_y_, _y_s, y_si, _sis, sist, iste, stem, tema, ema_,
ma_d, a_de, _de_, de_e, e_en, _ent, entr, ntre, tret, rete, eten, teni, enim, nimi, imie, mien, ient,
ento, nto_, to_;, o_;_, _;_1, ;_lo, _lo_, lo_n, o_no, _no_, no_c, o_co, _com, comp, ompr, mpre, pren,
ren_ }

(b) An example of configuration for INEGI benchmark for g-grams (i.e., 4—grams)

Fig. 5. Examples of text representation.

so, given text of size m characters, we obtain a set with at most
m —q+ 1 elements. Notice that this transformation handle white-
spaces as part of the text. Since there will be g-grams connecting
words, in some sense, applying g-grams to the entire text can cap-
ture part of the syntactic information in the sentence. The rationale
of g-grams is to tackle misspelled sentences from the approximate
pattern matching perspective (Navarro & Raffinot, 2002), where it
is used for efficient searching of text with some degree of error.

A more elaborated example shows why the g-gram trans-
formation is more robust to variations of the text. Let T =
I_like_vanilla and T/ =I_lik3_vanila, clearly, both texts are
different and a plain algorithm will simply associate a low sim-
ilarity between both texts. However, after extracting its 3-grams,
the resulting objects are more similar:

Q;:{I_l, _1li, 1ik, ike, ke_, e_v, _va, van, ani, nil,
ill, 1la}

Q) ={1_1, _1i, lik, ik3, k3_, 3_v, _va, vam, ani,
nil, ila}

Just to fix ideas, let these two sets to be compared using the
Jaccard’s coefficient as similarity, i.e.

T !

M = 0.448.

1Qf uQ]|

These sets are more similar than the ones resulting from the orig-
inal text split as words

{1, like, vanilla}N{I, 1ik3, vanila}|

=0.2
[{1, 1ike, vanilla}U {I, 1ik3, vanila}|

The assumption is that a machine learning algorithm knowing how
to classify T will do a better job classifying T' using g-grams than a
plain representation. This fact is used to create a robust method
against misspelled words and other deliberated modifications to
the text.

3.2. Examples of text transformation stage

In order to illustrate the text transformation pipeline, we show
the examples in Fig. 5(a) and (b). In Fig. 5(a) we can see the re-
sulting text representation for a configuration for words on IN-
EGI bechmark, i.e., the parameters used to transform the original
text into the new representation are stemming (stem), reduced re-
peated symbols up to one symbol (del-d1), the removal of diacritic

Table 2
Datasets details from each competition tested in this work.
Benchmark Classes Total
Name Part Positive ~ Neutral = Negative None
INEGI Train 2908 986 1110 409 5413
Test 26,911 8868 9571 3361 48,711
54,124
TASS'15 Train 2884 670 2182 1482 7218
Test 22,233 1305 15,844 21,416 60,798
68,016

(del-diac), and coarsening users (usr), and negations (neg). The final
text representation is based on 1-word.

The other example, Fig. 5(b), is a configuration for character 4-
gram representation on the same benchmark using the following
parameters: the removal of diacritic (del-diac), coarsening emoti-
cons (emo), coarsening users (usr), changing words into lowercase
(Ic), negations (neg), and TFIDF is used to weight the tokens, it has
no text representation. The final representation is based on charac-
ter 4-grams, and the underscore symbol is used as space character
to separate words and it is part of the token in which it appears.

4. Benchmarks and parameter settings

At this point, we are in the position to analyze the performance
of described text representations on sentiment analysis bench-
marks. In particular, we test our representations in the task of de-
termining the global polarity —four polarity levels: positive, neu-
tral, negative, and none (no sentiment)— of each tweet in two
benchmarks.

Table 2 describes our benchmarks. The INEGI benchmark con-
sists on tweets geo-referenced to Mexico; the data was collected
and labeled between 2014 and 2015 by the Mexican Institute of
Statistics and Geography (INEGI). The INEGI's tweets come from
the general population without any filtering beyond its geographic
location. INEGI benchmark has a total of 54,124 tweets (in the
Spanish language). The tagging process of INEGI dataset was con-
ducted through a web application (called pioanalisis®, it was de-
signed by the personnel of the Institute). Each tweet was displayed

5 http://cienciadedatos.inegi.org.mx/pioanalisis/#/login
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Table 3
Parameter list and a brief description of their functionality.

Weighting schemes /| Removing common words

Name Values Description
tfidf yes, no After the text is represented as a bag of words, it determines if the vectors are weighted using the TFIDF

scheme. If it is no then the term frequency in the text is used as weight.
del-sw yes, no Determines if the stopwords are removed. It is related to TFIDF in the sense that a proper weighting scheme

assigns a low weight for common words.

Morphological reductions
Name Values Description
lem yes, no Determines if words sharing a common root are replaced by its root.
stem yes, no Determines if words are stemmed.
Transformations based on removing or replacing substrings

Name Values Description
del-punc yes, no The punctuation symbols are removed if del-punc is yes, they are left untouched otherwise.
del-ent yes, no Determines if entities are removed in order to generalize the content of the text.
del-d1 yes, no If it is enabled then the sequences of repeated symbols are replaced by a single occurrence of the symbol.
del-d2 yes, no If it is enabled then the repeated sequences of two symbols are replaced by a single occurrence of the

sequence.
del-diac yes, no Determines if diacritic symbols, e.g., accent symbols, should be removed from the text.

Coarsening transformations
Name Values Description
emo yes, no Emoticons are replaced by its expressed emotion if it is enabled.
num yes, no Determines if numeric words are replaced by a common identifier.
url yes, no Determines if URLs are left untouched or replaced by a unique url identifier.
usr yes, no Determines if users mentions are replaced by a unique user identifier.
Ic yes, no Letters are normalized to be lowercase if it is enabled.
Handling negation words
Name Values Description
neg yes, no Determines if negation operators in the text are normalized and directly connected with the modified object.
Tokenizing the transformation

Name Values Description
n-words {1, 2} Determines the number of words used to describe a token.
q-grams {3,4,5,6,7} Determines the length in characters of the g-grams (q).

and human tagged it as positive, neutral, negative or none. After
this procedure, every tweet was tagged by several humans, the la-
bel with major consensus was assigned as a final tagged. We dis-
card tweets being on tie.

On the other hand, our second benchmark is the one used in
TASS'15 workshop (Taller de Andlisis de Sentimientos en la SE-
PLN) (Roman et al., 2015). Here, the whole corpus contains over
68,000 tweets, written in Spanish, related to well-known person-
alities and celebrities of several topics such as politics, economy,
communication, mass media, and culture. These tweets were ac-
quired between November 2011 and March 2012. The whole cor-
pus was split into a training set (about 10%) and test set (remaining
90%). Each tweet was tagged with its global polarity (positive, neg-
ative or neutral) or no polarity at all (four classes in total). The tag-
ging process was done in a semi-automatically way where a base-
line machine learning algorithm classifies them, and then all the
tagged tweets are manually checked by human experts; for more
details of this database construction see Roman et al., 2015.

We partitioned INEGI in 10% for training and 90% for testing,
following the setup of TASS'15; this large test-set pursues the gen-
erality of the method. Hereafter, we name the test set as the
gold-standard, and we interchange both names as synonyms. The
accuracy is the major score in both benchmarks, again because
TASS'15 uses this score as its measure. We also report the macro-
F1 score to help to understand the performance on heavily unbal-
anced datasets, see Table 2.

In general, both benchmarks are full of errors, and these er-
rors vary from simple mistakes to deliberate modification of words
and syntactic rules. However, it is worth to mention that INEGI
is a collection of an open domain, and moreover, it comes from
the general public; then we can see the frequency of misspellings

and grammatical errors as a major difference between INEGI and
TASS'15.

Fig. 6 shows the size of the vocabulary as the number of words
in the collection increases. The Heaps’ law, (Baeza-Yates & Ribeiro-
Neto, 2011), states that the growth of the vocabulary follows O(n%)
for 0 < o < 1, for a document of size n. The figure illustrates the
growth rate of our both benchmarks, along with a well-written set
of documents, i.e., classic Books of the Spanish literature from the
Gutenberg project (Gutenberg, 2016). The Books collections curve
is below than any of our collections; its growth factor is clearly
smaller. The precise values of « for each collection are oqpgqq5 =
0.718, ayneg = 0.756, and apeoks = 0.607, these values were deter-
mined with a regression over the formulae.® There is a significant
difference between the three collections, and it corresponds to the
high amount of errors in TASS'15, and, the higher one in INEGL

4.1. Parameters of the text transformations

As described in Section 3 the different text transformation
methods are explored in this research. Table 3 complements this
description by listing the different values these transformations
have. From the table, it can be observed that most parameters are
either the use or absence of the particular transformation with the
exceptions n-words and g-grams.

Based on the different values of the parameters, we can count
the number of different text transformation which is 7 x 21° =
229, 369 configurations (the constant 7 corresponds to the number
of tokenizers). Evaluating all these setups, for each benchmark, is

6 The tweets were slightly normalized removing all URLs and standardizing all
characters to lowercase.
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Fig. 6. On the left, the growth of the vocabulary in our benchmarks and a collection of books from the Gutenberg project. On the right, the vocabulary growth in 42 million

tweets.

computationally expensive. Also, we perform the same exhaustive
in the test set to compare the achieved result and the best possible
under our approach. Along with these experiments, we also eval-
uate a number of experiments to prove and compare a series of
improvements. In the end, we evaluated close to one million con-
figurations. For instance, using an Intel(R) Xeon(R) CPU E5-2630 v2
@ 2.60 GHz workstation, we need ~ 12 minutes in average for a
single configuration, running on a single core. Therefore, it needs
roughly 24 years of computing time. Nonetheless, we used a small
cluster to compute all configurations in some weeks. Notice that
the time of determining the part-of-the-speech, needed by param-
eters stem and lem, is not reported since it was executed only once
for all texts and loaded from a cache whenever is needed. The
lemmatization step needs close to 56 min to transform the INEGI
dataset in the same hardware.

4.2. About the score functions

The objective of a classifier is to maximize a score function that
measures the quality of the predictions. We measure our contribu-
tion with accuracy and macro-F1, which are defined as follows.
total TP + total TN

total samples

accuracy =

Where, TP denotes the number of true positives, TN the true
negatives; FP and FN are the number of false positives and false
negatives, respectively. All these measures can be parametrized by
class c. So, the accuracy is calculated by dividing the total of cor-
rectly classified samples by the total number of samples.

recision, = TP
p <= TP, + FP,
TP,
recall, = TP, £ FN.

The Fj  is defined as the harmonic mean of the precision and
the recall, per class, defined as follows.

2 - accuracy, - recall,
accuracy, + recall,

Fl,c—

The macro-F1 score is the average of all per-class F1 scores:

1
macro-F, = i > F

cel

where £ is the set of valid classes. In this sense, macro-F1 summa-
rizes the precision and recall scores, always tending to small values
since it is defined in terms of the harmonic mean. It is worth to
mention that macro-F1 can be small even on high accuracy values,
especially on unbalanced datasets. The interested reader is refer-
enced to an excellent survey on text classifiers and performance
metrics, in Sebastiani (2008).

5. Experimental analysis

This section is devoted to describe and analyze the performance
of the configuration space, provide the sufficient experimental ev-
idence to prove that g-gram tokenizers are better than n-words,
at least under the sentiment analysis domain in Spanish. Further-
more, we also provide the experimental analysis for the combina-
tion of tokenizers, which improves the whole performance without
moving too far from our text classifier structure.

We use both training and test datasets in our experiments. The
performance on the training set is computed using 5-fold cross val-
idation, and the performance on test set is computed directly on
the gold-standard. As previously described, training and test are
disjoint sets, see Table 2 for details of our benchmarks. As men-
tioned, the classifier was fixed to be SVM; we use the implemen-
tation from the Scikit-learn project (Pedregosa et al., 2011) using
a linear kernel. We use the default parameters of the library; no
additional tuning was performed in this sense.

5.1. A performance comparison of n-words and q-grams

Fig. 7 shows the histogram of accuracies for our configuration-
space in both training and test partitions. Fig. 7(a) and (c) show
the performance of configurations with n-words as tokenizer (un-
igrams and bigrams), for training and test datasets respectively. It
is possible to see that the form is preserved, and also that TFIDF
configurations can perform slightly better than those using only
the term frequency. However, the accuracy range being shared by
both kinds of configurations is large.

In contrast, Fig. 7(b) shows the performance of configura-
tions with g-grams as tokenizers. Here, the improvement of the
TFIDF class is more significant than those configurations not using
TFIDF; also, the performance achieved by the g-grams with TFIDF
is consistently better than the performance of the all n-word con-
figurations in our space. This is also valid for the test dataset, see
Fig. 7(d).
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(c) Performance for n-words in gold standard
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(b) Performance for g-grams in training subset
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(d) Performance for g-grams in gold standard

Fig. 7. Accuracy’s histogram, by tokenizer's class, for the INEGI benchmark. The performance on the training set was computed with 5-folds. We select to divide each figure

to show the effect of TFIDF, which it is essencial for g-grams’s performance.

Fig. 8 shows the performance of INEGI on configurations us-
ing g-grams as tokenizers. On the left, Fig. 8(a) and (c) show the
performance of configurations without TFIDF. In train, the best
performance is close to 0.57, and less than 0.58 in the test set.
The best performing tokenizer is 7-grams. When TFIDF is allowed,
Table 8(b) and (d), the best performances are achieved, in both
training and test, close to 0.61 in the training set and higher in the
gold-standard. The best configurations are those with 5-grams and
6-grams. The 5-grams is consistently better, it achieves accuracy
values of 0.6065 and 0.6148 for training and test sets, respectively.

5.1.1. Performance on the TASS'15 benchmark

The performance on TASS'15 is similar to that found in the IN-
EGI benchmark; however, TASS'15 shows a higher sparsity of the
accuracy along the range on n-words, ranging from 0.35 to close
than 0.61. In the training set, the best performances are achieved
using TFIDF.

The best configurations are those using g-grams, as depicted in
Fig. 9(b) and (d), where accuracy values achieve close to 0.63 in
both training and test sets. In contrast to INEGI and the training set
of TASS'15, the best performing g-gram tokenizer has no TFIDF;
however, the configurations with TFIDF are tightly concentrated
which means that is more easy to pick a good configuration under
a random selection, or by the insight of an expert.

Fig. 10 shows a finer analysis of the performance of g-grams
tokenizers in TASS'15. We can observe that 5-grams appear as the
best in the training set and in the gold-standard with TFIDF, but
the best performing configuration uses 6-grams tokenizers and no

TFIDF; please note that TFIDF has the best accuracy on the train-
ing set, so we have not way to know this behaviour without testing
all possible configurations in the gold-standard. Also, the difference
between the best TFIDF and the best no-TFIDF configurations is of
around 0.005; that is quite small to discard the current bias that
suggest to use TFIDF configurations.

5.2. Top-k analysis

This section focus on the structural analysis of the best k con-
figurations (based on the accuracy score) of our previous results.
We call this technique top-k analysis, and it describes the configu-
rations with the empirical probability of a parameter to be enabled
among the best k configurations. The score values are defined as
the minimum among the set. The main idea is to discover patterns
on the composition of best performing configurations. As we dou-
ble k at each row, then k and 2k share k configurations which pro-
duces a smoothly convergence to 0.5 for each probability. At the
best of our knowledge, this kind of analysis has never been used
in the literature.

All tables in this subsection are induced by the accuracy score
(i.e, best k as measured with accuracy). Also, we display the
macro-F1 score as a secondary measure of performance that can
help to describe the behaviour of unbalanced multi-class datasets.
We omit to show the tokenizer probabilities in favor of Figs. 8 and
10; please remind that almost all top configurations use g-grams.

Table 4 shows the composition of INEGI’s best configurations in
both training and test sets. As previously shown, almost all best se-
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Fig. 8. Accuracy’s histogram for g-gram configurations in the INEGI benchmark. As before, the performance on the training set was computed with 5-folds.

Table 4
Analysis of the k best configurations for the INEGI benchmark in both training and test datasets.
k Accuracy  Macro-F1  tfidf  del-sw lem stem  del-d1 del-d2 del-punc del-diac del-ent emo num url usr Ic neg
1 0.6065 0.4524 1.00 0.00 0.00 100 0.00 0.00 0.00 0.00 1.00 1.00 000 000 100 000 100
2 0.6065 0.4524 1.00 0.00 0.00 100 0.00 0.00 0.50 0.00 1.00 1.00 000 000 100 0.00 0.0
4 0.6065 0.4524 1.00 0.00 000 100 0.00 0.00 0.50 0.00 1.00 1.00 000 000 100 0.00 050
8 0.6059 0.4511 1.00 0.00 0.00 100 0.00 0.00 0.50 0.00 1.00 1.00 050 0.00 1.00 000 0.50
16 0.6058 0.4568 1.00 0.19 0.00 100 0.19 0.00 0.44 0.13 0.81 1.00 038 019 1.00 019 0.56
32 0.6052 0.4507 1.00 031 0.00  0.69 0.25 0.00 0.47 0.19 0.56 1.00 031 038 1.00 044 053
64 0.6047 0.4516 1.00 0.22 0.00 0.78 0.44 0.00 0.50 0.33 0.66 1.00 038 019 1.00 053 0.52
128  0.6037 0.4643 1.00 0.20 0.00 0.77 0.45 0.03 0.50 0.31 0.53 1.00 042 028 1.00 058 049
256  0.6024 0.4489 1.00 014 0.00 0.77 0.36 0.09 0.50 0.40 0.51 100 044 043 100 062 051
512 0.6008 0.4315 1.00 017 000 0.73 0.42 0.17 0.50 0.43 0.41 1.00 041 048 099 062 0.51
a) Performance on the training dataset (5-folds)
k Accuracy  Macro-F1  tfidf  del-sw lem stem  del-d1 del-d2 del-punc del-diac del-ent emo num url usr Ic neg
1 0.6148 0.4442 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 000 000 100 100 100
2 0.6148 0.4442 1.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.00 1.00 000 000 100 100 100
4 0.6136 0.4405 1.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.00 1.00 050 000 100 100 100
8 0.6135 0.4545 1.00 0.00 0.00 0.25 0.00 0.00 0.62 0.75 0.00 1.00 050 000 100 100 0.88
16 0.6134 0.4546 1.00 0.00 000 038 0.00 0.00 0.50 0.88 0.00 100 062 038 1.00 100 0.81
32 0.6130 0.4528 1.00 0.00 0.00 0.50 0.06 0.00 0.50 0.94 0.00 1.00 044 044 100 100 0.62
64 0.6119 0.4403 1.00 012 0.00 0.44 0.19 0.00 0.50 0.72 0.00 1.00 044 041 1.00 100 0.62
128  0.6112 0.4547 1.00 0.30 000 048 0.27 0.00 0.50 0.61 0.00 1.00 050 052 100 098 061
256  0.6099 0.4379 1.00 035 0.00 0.46 0.37 0.00 0.50 0.50 0.05 1.00 046 048 1.00 092 053
512 0.6083 0.4479 1.00 0.27 0.00 0.52 0.27 0.05 0.50 0.51 0.13 1.00 045 048 1.00 075 0.55

b) Performance on the gold-standard dataset
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Fig. 9. Accuracy’s histogram, by tokenizer’s class, for the TASS benchmark. The performance on the training set was computed with 5-folds. We select to divide each figure

to show the effect of TFIDF, which it is essencial for g-grams’s performance.

tups enable TFIDF, and properly handle emoticons and users. The
parameters del-sw, lem, del-d1, del-d2, num, and url, are almost de-
activated in both training and test sets. The rest of the parameters
(stem, del-diac, del-ent, and neg) do not remain between training
and test sets. However, the later set of parameters are disabled in
the gold-standard best configurations, excepting for neg. Such fact
supports the idea that faster configurations also can produce ex-
cellent performances. Please notice that lemmatization (lem) and
stemming (stem) are also disabled, which are the linguistic opera-
tions with higher computational costs in our pipeline of text trans-
formations.

Table 5 shows the top-k analysis for TASS'15. Again, TFIDF is
a common ingredient of the majority of the better configurations
in the training set; however, the best ones deactivate this param-
eter to use only the frequency of the term; reflected in a mini-
mum improvement. The transformations that remain active in both
training and set are del-sw, del-d1, url, usr, Ic, and neg. The deacti-
vated ones in both sets are lem, stem, del-d2, and del-ent, and emo.
The rest of the parameters that change between training and test
sets are tfidf, del-diac, and num. Note that as k grows, del-punc and
emo, are close to be random choices. It is counterintuitive to see
the emo parameter outside the top-k items, the same happens for
the del-ent parameter. The emo parameter is used to map emoti-
cons and emojis to sentiments, and del-ent is an heuristic designed
to generalize the sentiment expression in the text (see Table 3).
This behaviour remember us that, in the end, everything depends
on the particular distribution of the dataset. In general, it is clear
that there is no a rule-of-thumb to compute the best configura-

tion. Therefore, a probabilistic approach, as it is the output of top-
k analysis, is useful to reduce the cost of the exploration of the
configuration space.

5.3. Improving the performance with combination of tokenizers

In previous experiments, we performed an exhaustive evalua-
tion of the configuration space; then, to improve over our results
we need to modify the configuration space. Instead of adding more
complex text transformations, we decide to use more than one to-
kenizer per configuration. More detailed, there exists 127 possible
combinations of tokenizers, that is, the powerset of

{2-words, 1-words, 3-grams, 4-grams, 5-grams, 6-grams, 7-grams},

minus the empty set. For this experiment, we only applied the
expansion of tokenizers to the best configurations found in the
previous experiments, since performing an exhaustive analysis of
the new configuration space becomes unfeasible. The hypothesis is
that the previous best configurations will be also compose some of
the best configurations in the new space, this is a fair assumption
that never get worst under an exhaustive analysis.

Fig. 11(a) shows the performance of 4064 configurations that
correspond to all combinations of tokenizers over the top-32 con-
figurations on the training set, see Table 4. The performance in
both training and test sets is pretty similar, and significantly bet-
ter than that achieved with a single tokenizer (Table 4). In Table 6
and Fig. 11, we can see a significant improvement with respective
to single tokenizers. The top-k analysis for the test set is listed
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Fig. 10. Accuracy’s histogram for q-gram configurations in the TASS benchmark. As before, the performance on the training set was computed with 5-folds.

Table 5
Analysis of the k best configurations (top-k) for the TASS'15 benchmark in both training and test datasets.
k Accuracy  Macro-F1  tfidf  del-sw  lem stem  del-d1 del-d2 del-punc  del-diac  del-ent emo num url usr Ic neg
1 0.6286 0.4951 1.00  1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 100 1.00 100 100 100
2 0.6286 0.4951 1.00  1.00 0.00 0.00 1.00 0.00 0.50 1.00 0.00 0.00 100 1.00 100 100 100
4 0.6281 0.4947 1.00 075 0.00 0.00 0.75 0.00 0.50 1.00 0.00 050 0.75 1.00 100 0.75 100
8 0.6279 0.4895 1.00 050 0.00 0.00 0.50 0.00 0.50 1.00 0.00 050 050 100 1.00 050 100
16 0.6270 0.4864 1.00 038 0.00 0.00 0.38 0.06 0.44 0.88 0.00 050 050 0.88 1.00 050 100
32 0.6265 0.4884 1.00 025 0.00 0.00 0.34 0.06 0.47 0.69 0.00 038 059 062 1.00 062 100
64 0.6258 0.4852 1.00 020 0.00 0.00 0.42 0.22 0.50 0.62 0.00 048 056 048 094 061 0.88
128  0.6254 0.4862 1.00 020 0.00 0.00 0.46 0.27 0.48 0.67 0.00 056 059 038 081 068 077
256 0.6247 0.4846 1.00 021 0.00 012 0.38 0.32 0.50 0.66 0.02 047 060 042 077 073 0.69
512 0.6240 0.4848 1.00 014 000 0.24 0.38 0.36 0.50 0.65 0.02 047  0.61 042 077 067 0.63
a) Performance in the training dataset (5-folds)
k Accuracy  Macro-F1  tfidf  del-sw  lem stem  del-d1  del-d2  del-punc  del-diac  del-ent emo num url usr Ic neg
1 0.6330 0.5101 0.00 100 0.00 0.00 1.00 0.00 0.00 0.00 0.00 000 000 100 100 100 100
2 0.6330 0.5101 0.00 100 0.00 0.00 1.00 0.00 0.50 0.00 0.00 0.00 0.00 100 100 100 100
4 0.6326 0.5099 0.00 100 0.00 0.00 1.00 0.00 0.50 0.00 0.00 050 0.00 100 100 100 100
8 0.6317 0.5104 0.00 100 0.00 0.00 1.00 0.00 0.50 0.00 0.00 025 000 050 1.00 100 0.75
16 0.6315 0.5082 0.00 100 0.00 0.00 1.00 0.00 0.50 0.38 0.00 038 000 038 100 100 0.88
32 0.6315 0.5069 0.00 0.69 0.00 0.12 0.78 0.16 0.47 0.38 0.00 056 0.00 062 069 100 0.81
64 0.6311 0.5071 0.00 0.62 0.00 012 0.83 0.19 0.48 0.39 0.00 0.66  0.12 056 062 100 0.81
128  0.6302 0.5061 0.00 0.56 000 0.25 0.80 0.25 0.48 043 0.00 072 022 062 056 100 0.77
256  0.6296 0.5054 0.00 0.38 0.00 0.27 0.69 0.34 0.50 0.47 0.00 073 023 062 038 094 065
512 0.6286 0.5048 0.06  0.39 0.00 0.34 0.68 0.42 0.50 0.46 0.02 075 038 057 036 080 0.66

b) Performance in the gold-standard dataset
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Fig. 11. Accuracy’s histogram for combination of tokenizers.
Table 6
Analysis of the top-k combinations of tokenizers for both INEGI and TASS'15 benchmarks. We consider both n-words and g-grams.
INEGI TASS'15
k Accuracy Macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7 k Accuracy Macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6553 0.5287 100 100 100 100 000 000 100 1 0.6391 0.4997 000 100 100 100 0.00 100 0.00
2 0.6550 0.5270 1.00 100 100 050 000 0.00 100 2 0.6391 0.4995 000 100 100 100 0.00 100 0.00
4 0.6549 0.5281 050 100 100 075 0.00 0.00 100 4 0.6391 0.4997 000 100 100 100 0.00 100 0.00
8 0.6542 0.5268 063 100 100 062 000 0.00 100 8 0.6383 0.5020 000 100 100 0.75 050 075 0.00
16 0.6538 0.5263 075 094 100 075 0.00 0.00 100 16 0.6380 0.4966 025 100 100 075 038 063 013
32 0.6527 0.5241 066 084 1.00 059 000 0.06 0838 32 0.6373 0.4972 018 1.00 100 063 050 069 019
64 0.6519 0.5235 056 077 100 052 009 006 084 64 0.6363 0.4940 030 100 094 075 055 058 017
128  0.6510 0.5258 065 061 099 055 018 025 078 128 0.6356 0.4937 032 097 094 077 053 066 026
256 0.6502 0.5205 061 064 097 058 022 031 079 256 0.6347 0.4927 039 096 088 081 056 066 035
512 0.6492 0.5172 062 066 096 055 030 040 074 512 06338 0.4954 042 092 086 073 057 056 039

in Table 6. In this table, we focus on describing the composition
of the tokenizers, instead of the text transformations. The analysis
shows that 1-words, 2-words, 3-grams, 4-grams, and 7-grams are
commonly present on the best configurations.

We found that TASS'15 also improves its performance under the
combination of tokenizers, as Fig. 11(b) illustrates. In this case, the
performance in the gold standard does not surpasses the perfor-
mance on the training set, as is the case of INEGI, but it is pretty
close. Table 6 shows the composition of the configurations, here
we can observe that best performances use 1-words, and 3-grams,
4-grams and 6-grams. It is interesting to note that 2-words are not
used for the top-8 configurations, in contrast to the best configu-
rations for INEGL

As mentioned, any datasets will need to adjust the configura-
tion and search for the best combination in the training set, and
then, apply to their particular gold-standard. This is a costly proce-
dure, but it is possible to reduce the search space to a sample lead
by the probability models of the top-k analysis. The presented top-
k analysis are particularly useful for sentiment analysis in Spanish,
other languages may present different models but they are beyond
the scope of this manuscript.

It is worth to mention that the best performance is high de-
pendent of the particular dataset; however, based on Tables 4 and
5, it is interesting to note that simpler configurations are among
the best performing ones when g-grams are used as tokenizers.
This allows to create a model that reduces the computational cost
and even improves the performance of the top-1 of both, INEGI
and TASS'15, datasets with a single tokenizer. We create a config-
uration created by activate tfidf, emo, num, usr, and Ic; and deacti-
vate del-sw, lem, stem, del-d1, del-d2, del-punc, del-diac, del-ent, and

neg. All the activated parameters are relatively simple to imple-
ment, even without external libraries. Note that leaving out stem-
ming and lemmatization dramatically reduces many times evalua-
tion time.

Table 7 shows the performance on the test set. The best con-
figuration based on single tokenizer is 0.6148 and 0.6330 for INEGI
and TASS'15, respectively; the best performance for combination of
tokenizers is 0.6553 and 0.6391, in the same order. For our hand-
crafted configuration, we reach an accuracy of 0.6546 for INEGI,
and 0.6364 for TASS'15. This is very competitive if we take into
account that the model selection is reduced to evaluate 127 con-
figurations, and also, each evaluation is pretty fast among other al-
ternatives.

The performances of this simple configurations are pretty close
to the best possible ones with our scheme, that is, the gold-
standard performance shown in Tables 4 and 5 while it can be
easily implemented and optimized.

5.4. Performance comparison on the TASS’15 challenge

In the end, a sentiment classifier is a tool that helps to dis-
cover the opinion of a crowd of people, the effectiveness is cru-
cial. So, there exists many researchers interested in the field, and
for instance, TASS'15 (Roman et al., 2015) is a forum that gathers
many practitioners and researchers for the Spanish version of the
problem. As described in Section 2, the problem is commonly tack-
led with the use of affective dictionaries, distant supervision meth-
ods to increase the knowledge database, word-embedding tech-
niques, complex linguistic tools like lemmatizers, deep learning-
based classifiers, among other sophisticated techniques. Beyond
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Table 7
Top-k analysis of a configuration handcrafted to reduce the computational cost.
INEGI TASS 15
k Accuracy Macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7 k Accuracy Macro-F1 n=2 n=1 q=3 q=4 q=5 q=6 q=7
1 0.6546 0.5279 100 100 100 100 000 000 100 1 0.6364 0.4971 000 100 100 100 000 100 0.00
2 0.6538 0.5268 100 100 100 050 000 000 100 2 0.6357 0.4943 000 100 100 100 050 050 0.50
4 0.6525 0.5266 050 100 100 050 000 000 100 4 0.6350 0.4920 000 100 100 075 025 050 0.50
8 0.6519 0.5257 063 075 100 050 025 000 100 8 0.6343 0.4948 025 100 100 075 050 063 025
16 06513 0.5237 069 075 094 056 025 031 088 16  0.6336 0.4943 038 094 094 069 063 063 025
32 06503 0.5270 059 066 094 056 031 041 075 32 06319 0.4890 044 084 081 078 059 053 044
64  0.6478 0.5225 055 061 078 061 047 059 067 64 0629 0.4842 047 069 073 070 059 055 047
96  0.6435 0.5250 055 055 061 060 054 054 057 96 06252 0.4895 049 058 060 063 057 053 050
120 0.6412 0.5128 054 054 055 054 055 054 055 120 0.6207 0.4748 050 054 055 056 056 054 051
127 05736 0.3946 050 050 050 050 050 050 050 127 0.5471 0.4154 050 050 050 050 050 050 050
0.75 ever, it is important to know its contribution to the solution of the
®—e TASS'15 scores . . .
~_ top-1 (words) single tokenizer task being tackled, as we showed, sometimes applying some tech-
- top-1 (5-grams) single tokenizer nique is counterproductive. Therefore, the transformation pipeline
070 L top-1 comb. of tokenizers . . . .
— top-1 handcrafted should be carefully prepared. Other techniques, like lemmatization
and stemming, are too complex to be implemented each time they
0.65 are needed; therefore, a mature implementation should be used.
However, as our experimental results support, for the sentiment
. analysis task in Spanish, there is no need to use these complex
o 0.60f linguistic techniques if our approach, based on the combination of
é tokenizers, is used.
9 0.55] More detailed, a lemmatizer is tightly linked to the

o
[
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Fig. 12. Comparison of our sentiment classifiers with the final scores of TASS'15.

the use of the SVM, there is no complex procedure that limits the
adoption of our approach only to expert users.

However, the question is, how good is our approach as
compared with both the state-of-the-art and the state-of-the-
technique? We use the TASS’15 benchmark to answer this ques-
tion. Section 2 reviews several of the best papers in the workshop.
Fig. 12 shows the official scores of TASS'15 participants, the best
scores achieve 0.72 and the worst ones are below 0.43. The gross
of the participants are between 0.59 and 0.61; there lies the best
sentiment classifier based on n-words (0.6051). The best configura-
tion that uses g-grams, as a single tokenizer, surpasses that range,
i.e., 0.6330. The classifiers based on the combination of tokeniz-
ers produce a slightly better performances, and our configuration
handcrafted for speed is not too distant from these performances,
as figure shows.

The magnitude of the improvement is tightly linked to the
dataset; for instance, as compared with the best n-words senti-
ment classifier, the performance of INEGI is improved in 11.17% af-
ter applying the combination of tokenizers. In the case of TASS'15,
the improvement is of 5.62%, smaller but significant in any case. It
is important to take into account this effect in the design of new
sentiment classifiers.

6. Discussion

In this study, we covered many traditional techniques used to
prepare text representations for sentiment analysis. The majority
of them are too simple to be aware of their complexities. How-

language being processed, we use Freeling by Padr6 and
Stanilovsky (2012b) for Spanish, and it is designed to work
on mostly well-written text. The stemming procedure is another
sophisticated tool, in our case, we used the Snowball for Spanish,
available in NLTK package by Bird et al. (2009). Since it is based
mostly on the removal of suffixes, then it is more robust to errors
than a lemmatizer. Both techniques are computationally expensive,
and both are not used by best-performing configurations; there-
fore, they should not be applied when the text is full of errors.
This is the case of Twitter, the source of our data.

From the perspective of practitioners, the simpler approach
is to find the best tokenizer’s combination as applied to a
set of simple setups; this gives us 127 combinations if our
{2-word, 1-word, 3 gm, 4 gm, 5 gm, 6 gm, 7 gm} set is used. Sup-
ported by the patterns found in our top-k analysis, the combina-
tions should have at least three tokenizers, and 1-words and 3-
grams can always be selected. So, if the complexity of the model
selection is an issue, only (g) + (2)+ (g) =16 combinations are
needed.

7. Conclusions

We were able to improve the performance of our sentiment
classifiers significantly. Our approach is simple; given a good ini-
tial configuration, we can enhance its performance using a set of
tokenizers that include both n-words and g-grams. We exhaus-
tively prove the superiority of g-grams over n-words, at least for
our case study (sentiment analysis in the Spanish language). At
first glance, large g-grams (q =5,6, or 7) are quasi-words; how-
ever, the g-grams are sliding windows over the entire text, mean-
ing that many times they cover the connection between two words
or even three words. In relatively large words, the suffixes and pre-
fixes are captured, when q is small, affixes and word’s root are also
captured. Nonetheless, this process creates many noisy substrings,
and that is the reason behind our best configurations almost al-
ways use TFIDF, which weights the tokens to reduce this effect. It
is necessary to produce a better process to filter out tokens that
not contribute beyond creating larger vectors.

However, a naive implementation of the multiple tokenizers
will multiply the necessary memory, i.e., actually it increases the
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memory needs by a factor of q for g-grams. This can be a problem
on very large collections. Further research is needed to solve this
issue.

The initial configuration can be a little tricky. In this study, we
provide several top-k analysis; the tables produced can be seen
as probabilistic models to create good performing classifiers. These
models should be valid at least for Spanish. In practice, this means
that we need to evaluate the performance of a few dozens of con-
figurations to select the best performing one among them. In a
modern multicore computing architecture, this means a relatively
fast procedure.

Finally, we conjectured that our approach would generalizes to
different languages because it works using a few language-specific
techniques. However, this claim should be supported by experi-
mental evidence. Also, we provide a list of simple rules to find a
sentiment classifier based on our findings; nonetheless, the best
setup is dependent of the dataset, the classes, and many others
task-dependent properties. In this paper, our approach consists in
performing an exhaustive evaluation of the parameter’s space and
then expand the search using a combination of tokenizers. We will
require a faster algorithm to find good setups on large configura-
tion’s spaces that work on different languages. Finally, we want to
make evident that we used SVM as classifier because of its pop-
ularity in the community, this paper mainly focuses on the treat-
ment of the text regardless, so the proper selection and tuning of
the classifier is left as future work.
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