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Abstract. In the last few years, text analysis has grown as a keystone in several domains for solving many real-world
problems, such as machine translation, spam detection, and question answering, to mention a few. Many of these tasks can
be approached by means of machine learning algorithms. Most of these algorithms take as input a transformation of the
text in the form of feature vectors containing an abstraction of the content. Most of recent vector representations focus on
the semantic component of text, however, we consider that also taking into account the lexical and syntactic components
the abstraction of content could be beneficial for learning tasks. In this work, we propose a content spectral-based text
representation applicable to machine learning algorithms for text analysis. This representation integrates the spectra from
the lexical, syntactic, and semantic components of text producing an abstract image, which can also be treated by both, text
and image learning algorithms. These components came from feature vectors of text. For demonstrating the goodness of our
proposal, this was tested on text classification and complexity reading score prediction tasks obtaining promising results.
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1. Introduction

Nowadays many text analysis tasks have been used
in a recurring manner to address real-world issues
such as classification, sentiment analysis, text sum-
marizing, text generation, automatic translation, hate
detection, among others [1]. Many of these tasks
resort to the use of machine learning algorithms to
find patterns on texts [2]. Usually, these algorithms
require numeric representations of text. Recently the
most used representations are in the form of feature
vectors of words, paragraphs, or entire documents,
which can be extracted by several means according
to the needs of the problem. These types of text rep-
resentations emphasize on abstracting the semantics
of documents, which is one of the most important
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features for handling text [3–5]. However, sometimes
these representations put aside other types of content
information such as lexical and syntactic by consid-
ering them in a partial way. Such information could
help to improve the results of the learning models in
which they are used.

Several works have exploited the semantics on
text for clustering [6], topic modeling [7], or clas-
sification [6] by using word-embeddings [8]. While
the usefulness of the semantic component has been
demonstrated with this approach, the integration of
lexical and syntactic components in a same rep-
resentation could be an advantage to enhance the
performance of this representation. We also can see
that given the nature in which these embeddings are
obtained, typically by means of deep neural net-
work techniques, these modern approaches are black
boxes, in which the user does not have control or
visual interpretation on how these models build these
embeddings at their outputs.
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In this work we propose a novel text representation,
which includes the three components of text together:
1) the lexical component, associated with the vocab-
ulary of texts, from which the possible topic of text
can be derived, 2) the syntactic component, associ-
ated with how do words structure a text, denoting the
writing style, and 3) the semantic component, associ-
ated with the meaning of text, relating words based on
the contexts where these ones occur [9]. Our proposal
is capable to take into account these components in
a fully, partial, or marginal manner. By taking into
account these three components of text together into a
single representation, we found that better results can
be obtained in machine learning algorithms for text
analysis. As part of this proposal, we made a compar-
ison of combinations of components of text to know
the gain of use them. So, briefly, the contributions of
this work are:

– A novel text representation integrating the
spectra of lexical, syntactic, and semantic com-
ponents of text. Such spectra can be used in a
joint, partial, or marginal manner.

– A comparison study testing all combinations of
the components of text to asses the performance
of two machine learning algorithms.

The rest of this paper is structured as follows. In
Section 2 some text representations are described, as
well as the strategy they follow to extract features
from text. In Section 3 the proposed methodology to
obtain our text representation is described. In Sec-
tion 4 the experimentation is reported by means of
two case studies, in these the text representation was
tested and statistical significance tests were obtained
to determine the goodness of the proposal. Finally, in
Section 5 the conclusions of the proposed represen-
tation and some remarks of the experimentation are
given.

2. Related work

The most important aspect of using machine
learning algorithms in text analysis tasks is the rep-
resentation of text; most of times, it is required a
numerical representation. These numerical represen-
tation abstract some components of text (lexical,
syntactic, and semantic). This section describes some
of these representations of text, as well as the main
characteristics of each one.

Early text representations considered as traditional
take into account that documents from a corpus

can be modeled in a vector space of the form �x =
(x1, x2, . . . , xd−1, xd), where d corresponds to the
number of words in the corpus’ vocabulary. In this
sense, a matrix of size n × d is build where n cor-
responds to the number of documents in the corpus.
The value assigned to the th-column depends on the
approach being used. The most simple one is in which
a value of 1 is assigned to the column if the word is
present in the document, 0 otherwise. This approach
is known as the one-hot encoding [10]. Since this
approach is hard discriminating, the value 1 assigned
to the th-column in the document vector was replaced
by the well known TF-IDF approach, which takes
into account the frequency of the word in the docu-
ment and a normalization of the frequency of the same
word in the whole corpus. Also, more columns were
considered in the building of the document vector by
adding windows of n words (n-grams) [10]. This type
of representations were good in the sense that they
considered lexical information, and also some sort
of syntactic information by using n-grams. Seman-
tic approaches later gained ground in the state of the
art.

Deerwester et al. [3] proposed the Latent Semantic
Analysis (LSA) approach as an information retrieval
technique in which documents were grouped accord-
ing to their lexical and semantic content. The authors
built a term-document matrix in which each row
corresponded to a word in the corpus, and each col-
umn represented each document, forming vectors.
The intersection between a row and a column in the
matrix contained the frequency of the word given its
corresponding document. From this matrix, the next
step was to build a “semantic” space where words
and related documents were placed in close posi-
tions in the vector space. For this, the authors used
singular value decomposition (SVD) to reduce rows
and highlight the most relevant associative patterns
in documents, ignoring the less relevant ones. From
this reduced semantic space, document vectors can
be retrieved to obtain topics into the corpus.

Mikolov et al. [4] proposed two architectures to
obtain continuous vectors of words, where the simi-
larity relationships in the vector space are given by the
semantic relationship between them, the well-known
word embeddings. Authors used the concept of text
window, known as n-gram, where a word was taken
as target and the rest as context words. Then by using
a neural network over the text, these n-grams are
learned, capturing semantic information from text.

The first architecture defined as Continuous Bag
of Words (CBOW) takes the context words as input,
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trying to predict the target word at the output of the
network; in the opposite case the second architec-
ture, Skip-gram takes the target word to predict the
context words. By this training approach, the gener-
ated vectors no longer depended on the size of the
corpus vocabulary, since the columns of these vec-
tors now depend on the definition of the model to be
trained.

Pennington et al. [5] proposed Global Vectors
(GloVe) as a way to improve some limitations of word
embeddings such as local semantic information, since
the generated vectors come from contexts of a target
word in a given n-gram without taking into account
how much semantic information the rest of words out
of this one provide. In contrast, GloVe uses a word
co-occurrence matrix to capture the semantic infor-
mation of all words in a document, which denotes
how all words contribute to the semantics of a partic-
ular target word. With this matrix, what is sought is
to predict the co-occurrence probability of words in a
given context. Authors used a weighted least squares
model to produce this type of word representation.
Given this co-occurrence scope, this representation is
also based mainly on the lexical and semantic infor-
mation of documents.

Proposals such as Mikolov et al. [4] and Penning-
ton et al. [5] are good approaches to obtain word
embeddings. Nevertheless, some tasks require not
word but document embeddings for their solutions.
Le and Mikolov [11] presented two variants of the
word embeddings proposed by Mikolov et al. [4] by
including a paragraph or document vector among the
context words being trained. Such models are The
Distributed Memory (PV-DM) and the Distributed
Bag of Words (PV-DBOW), which can be considered
as extensions of the CBOW and Skip-gram models
respectively. We can find some other approaches
in the literature to obtain document vectors such as
works proposed by Pagliardini et al. [12], Kiros et
al. [13] and Chen [14].

Peters et al. [15] proposed Embeddings for Lan-
guage Models (ELMo), a representation of deeply
contextualized word vectors modeling lexical and
semantic features of words. The main difference of
this representation against others such as the one of
Mikolov et al. [4] is that each word is assigned to a
representation that is based on a complete sentence.
To obtain this type of embedding they resort to the use
of a bidirectional LSTM (biLSTM) neural network.
This type of language model has the particularity of
having memory about the words that are before and
after each other. By combining the internal states of

the biLSTM network it is possible to obtain com-
plex semantic representations, which are capable of
solving problems such as word disambiguation.

Vaswani et al. [16] introduced the transformer
model which became a milestone of modern language
modeling techniques. Unlike previous proposals, this
one moved away from convolutional and recurrence-
based models to incorporate sequential attention
mechanisms that highlight the relationship of words
in a sentence to produce word and sentence vec-
tors. Thanks to this proposal, transformers are able to
speed up the learning process by incorporating lexical
information, semantic information, and information
about the position of words in sentences without
having to perform inference with a recurrence-based
approach such as ELMo. This set of algorithms is very
good for solving problems such as word prediction,
language modeling, question answering, among oth-
ers. In this family of techniques, we can find several
variants among which some of the most popular can
be considered BERT [17], GPT-1 [18], GPT-2 [19],
and GPT-3 [20].

In the area of computer vision, some works have
proposed algorithms combining data in a multimodal
way. For example, those that use text and images to
train generative models. Such is the case of Reed et
al. [21], who proposed a model for image generation
from textual descriptions of images using genera-
tive adversarial networks (GANs). Also Li et al. [22]
proposed a similar idea by using this type of neu-
ral network by adding a word-level discriminator to
correlate a text with its corresponding images. A sim-
ilar approach was presented by Li et al. [23], authors
included semantic information from the text to map
sub-regions of the images during the model training.
It is worth to mention that although these works pro-
pose to generate images from text, our approach is
different because we focus on obtaining a represen-
tation of text outside of the area of computer vision.
According to our knowledge, there is not a similar
approach as ours.

As described in the previous works, the existing
representations of text generally focus partially on the
components of text (lexical, syntactic, and semantic).
Some of these representations, which seems to leav-
ing aside the already available information from text,
in which case, we consider taking into account all
the components of text could provide improvements,
in terms of performance, of learning algorithms. We
look to obtain a text representation which can be used
where lexical, syntactic or semantic components are
required.
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Fig. 1. Pipeline to obtain content spectral-based text representation composed of four stages 1) Text cleansing, where text pre-processing
techniques are applied to obtain a clean corpus; 2) Feature extraction, where text is transformed into three sets of feature vectors, one for each
text component; 3) Unified space mapping, where feature vectors serve as training data for Self Organizing Maps (SOM) networks to obtain
content projections with a fixed size; and 4) Layers consolidation, where each the three projections of a single document are consolidated
into a single image, which contains lexical, syntactic, and semantic information about the documents.

3. Text representation proposal

The research interest of this work was to address
the gain of combining all or some of the three com-
ponents of text. We show that these combinations
exhibits a better performance in machine learning
algorithms for text analysis. Our proposal does not
assume prior knowledge about corpus that allow us
to induce classes or partitions.

Let D be a corpus of unlabeled documents d,
∀d ∈ D there exists a 2-dimensional matrix with fixed
size that contains a projection of content of d, that
we call spectral-based text representation. To obtain
such representation, the text must pass in the pipeline
of processes shown in Figure 1.

This pipeline is comprised of four main stages
described as follows. First, the input corpus D is pre-
processed to obtain a clean text from each document
that serves as input to the next stage. In Subsection
3.1 the pre-processing techniques applied to D are
described, where the used techniques vary depend-
ing on the component of text (lexical, syntactic, and
semantic); this generates a set of pre-processed text
for each component. In the second stage (feature
extraction), these sets are transformed into vectors
sets (one per each text component), which contain
features of the content in every d. The size of these
vectors depends on the component of text, this pro-
cess is described in Subsection 3.2. In the third stage,
every vector set is projected into a two-dimensional
numerical space (matrix) according to the compo-

nent of text (lexical, syntactic, and semantic), which
denotes a specter that defines a pattern for each d,
this process is described in Subsection 3.3. Finally,
in Subsection 3.4 the three projections for a single d

are consolidated into a single spectre (image).

3.1. Text cleansing

As mentioned, our proposal works over the three
components of text. In this regard, according to the
component in which we are working on, we apply
some pre-processing techniques to D to generate
three sets Dlex, Dsyn, and Dsem, which correspond
to each of component of text. The applied techniques
are described below.

– Lexical layer. In this layer we are interested in
the vocabulary used in D, which may reflect
the type of information in documents, techni-
cal documents may use a specialized vocabulary,
simpler documents may use a more generic
one. The common pre-processing tasks for this
component include: line breaks removal, special
characters removal, extra spaces regularization,
digit removal, punctuation symbols removal,
stopwords removal, and lemmatization [24],
which help us to reduce words to their minimum
lexical value, this also helps us to reduce the size
of the vocabulary. From this layer the set Dlex is
produced.
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Fig. 2. Part-Of-Speech tagging example, where words of the input
text are replaced with their corresponding part of speech tag.

– Syntactic layer. For this layer we want to extract
those features that may remark the writing style
used on each d. Thus, the used vocabulary is not
as important for this component as in the lexical
layer. We turn the original text into chains of part
of speech (POS) tags, where we obtain the gram-
mar category of each word for further feature
extraction [25]. An example of this is shown in
Figure 2. To obtain Dsyn, the next pre-processing
tasks were also applied: line breaks removal,
special characters removal, extra spaces regu-
larization, digit removal, punctuation symbols
removal, stopwords removal.

– Semantic layer. Here we also use the pre-
processing tasks of the lexical and syntactic
layers to produce Dsem, these tasks are: line
breaks removal, special characters removal,
extra spaces regularization, digit removal, punc-
tuation symbols removal, stopwords removal.
Since we want to preserve the context of words
to get as much semantic information as possible,
we do not use any lemmatization neither POS
tagging techniques in this layer.

3.2. Feature extraction

Given the pre-processed sets Dlex, Dsyn, and Dsem,
in this stage, we transform each of these sets into sets
of feature vectors Xlex, Xsyn, and Xsem respectively.
Such sets abstract information about each component
of text. In this regard, for each pre-processed set a
different feature extraction process is applied. These
used approaches are described below.

– Lexical layer. In this layer we abstract the
words of each d. Commonly frequency-based
approaches are applied for this task [26]. In these
approaches, a feature matrix X is build from D,
where each row corresponds to a document d

and each column correspond to a word w in the
vocabulary. As is expected, the size of X may
grow to thousands of columns since the vocab-
ulary may vary a lot. The value in the matrix
corresponding to the intersection of row and
columns represents a measure of frequency for
a word w given a document d. To reduce the
vocabulary of D we apply lemmatization. This
task was performed in the text cleansing stage to
obtain Dlex, which in consequence also reduces
the number of columns in the resultant Xlex.

A common problem in this task is that stop-
words may be highlighted given the frequent
use of them in documents. Although we have
removed most of them in the text cleansing stage,
we want to highlight those words which fre-
quency is low for each d; then, we remark the
pattern of words usage in d. For this we use
an information-based approach, where the value
assigned to the intersection of a row and a col-
umn in matrix Xlex is given by the amount of
information that w grants to d given its prob-
ability of occurrence (p(wj)). Then, we build
vectors of the form �xi = [I(w0), I(w1), . . . ,
I(wj−1), I(wj)]. The value computed for each
column is given by the Shannon information
content of an outcome wj , such as Equation 1
describes [27].

I(wj) = −log2(p(wj)) (1)

where I(wj) is the amount of information that wj

gives to d, and wj is a word in the vocabulary.
– Semantic layer. In this layer we desire doc-

ument vectors close semantically, denoting
similar meanings to create Xsem. We take advan-
tage of the word embeddings approach for
capturing semantic information about words and
their contexts in every d.

In this regard, we apply the Doc2Vec algo-
rithm [11]over Dsem by using the Distributed
Memory Model of Paragraph Vectors (PV-
DM) architecture. Nevertheless, also the Words
version of Paragraph Vector (PV-DBOW) archi-
tecture could be used. The Doc2Vec algorithm
obtains continuous fixed sized vectors from
variable-length pieces of text (from a single
word to paragraphs or entire documents) by con-
catenating a vector that represents d with its
corresponding word vectors.

– Syntactic layer. During the text cleansing stage,
we use a POS tagging algorithm to transform the
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Fig. 3. Self-Organizing Map with a two-dimensional input vector
and a two-dimensional lattice.

original words into chains of POS tags (Dsyn).
In this manner, we put aside the lexical and
semantic information to focus on syntactic con-
tent that could give us information about how
words are structured and highlight the writing
style of the documents. Since the Doc2Vec algo-
rithm makes use of the words surrounding a
target word, we assume that it also stores some-
how syntactic information about the content in
d. Then, changing the vocabulary of D for its
corresponding set of POS tags, it is possible that
the Doc2Vec algorithm focuses more on syn-
tactic rather than semantic information. Thus,
from Dsyn we obtain Xsyn by using the Doc2Vec
algorithm.

3.3. Unified space mapping

Given the nature of methods to obtain the sets of
feature vectors Xlex, Xsin, and Xsem, such sets have a
different number of dimensions, which is a problem if
we want to put together the three components of text
into a single representation. It is necessary to map
them to a space in the same dimensions in that man-
ner they hold their similarity features. To solve this
problem we resort to the Self-Organized Map (SOM)
approach [28]. In this two-layer neural network, the
input layer can receive different-size vectors, and the
output layer produces a feature map (SOM lattice) of
a fixed size; as is illustrated in the Figure 3.

As can be seen, each neuron in the output layer
has a vector of weights �ω with the same number of
dimensions as the input layer. Thus, we are able to
map a vector with any number of dimensions to a
fixed-sized matrix (SOM lattice). The training of this
kind of neural network is as follows: During training,
�ω are adjusted by a competitive method in which one
of the �x is presented to the input layer, then a neuron
called the best matching unit (BMU) is selected. After
this, the neurons in the same lattice neighborhood are
selected, and the �ω of these neurons are adapted to
resemble �x through a learning function. After this,
another �x is presented with a smaller BMU neighbor-
hood size. This process is repeated during a defined
number of iterations.

After the SOM training stage we can see how all �ω
in the SOM lattice tend to fit the distribution of data
in the input vectors �x, an example of this is shown in
Figure 4. Such a property of this neural network is
favorable to preserve the similarity features of Xlex,
Xsin, and Xsem in the new space.

Thus, at this stage we train three SOM models,
one per each component of text, using the vector sets
Xlex, Xsin, and Xsem as training sets. The size of the

Fig. 4. Example of the distribution of the SOM’s weights vectors �ω before and after training. On the left, a 2-dimensional synthetic training
data set X is given, in the center the SOM’s �ω before the training process, and on the right the SOM’s �ω after the training process. Weight
vectors �ω are fitted to X’s distribution during the training.
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Fig. 5. Projection of a two-dimensional feature vector into a given previously trained SOM grid.

lattice of the three resulting models must be the same
to carry out the projection of the training sets later.

Once the training of the three models has been per-
formed, the next step is to make the projection of
each vector in Xlex, Xsin, and Xsem in their corre-
sponding lattice to obtain spectra, one per each layer
of the same d, which contains lexical, syntactic, and
semantic features of d. To obtain these projections,
each vector in sets Xlex, Xsin, and Xsem are passed
through its corresponding previously trained SOM
model. By presenting each feature vector to its cor-
responding SOM model, each of the neurons in the
SOM lattice is stimulated according to the similarity
between the input vector against each of the weights
vectors in the lattice, as is shown in Figure 5. The
degree of stimulation for each neuron in the SOM
lattice is computed by using the Equation 2.

f (�x, �ω) = 1
(∑n

i=0 |xi − wi|p
) 1

p

(2)

where �x is a feature vector of d in its correspond-
ing component layer, �ω is the vector of weights for
a given neuron in the SOM lattice, n is the number
of dimensions of �x, and p is a type of distance def-
inition (1 for Manhattan distance or 2 for Euclidean
distance).

Since the training time of a SOM is directly pro-
portional to the number of dimensions (d) of the
training feature vectors and the size of the SOM lattice
(m × m), we can define the complexity of our pro-
posal as a polynomial expression of the form O(dm2).
Examples of the spectra obtained for some documents
are shown in Figure 6, where each row corresponds
to a given document and each column corresponds to
their lexical, syntactic, and semantic components.

3.4. Layers consolidation

Up to this point, we have worked on each compo-
nent of text from d separately, however, we desire a
single representation containing the abstraction of the
three components of text of d. For this, we consider
each of these spectra as a channel of an image. Then,
we concatenate the three spectra as a single image. In
this manner, we pass a text to a representation, which
can be treated as image or text.

4. Experiments and results

To determine if a machine learning technique is
able to learn from the proposed text representation,
this was tested in two case studies of text analysis: text
classification and complexity reading score predic-
tion. All the implementations were made by using the
Keras1 and Tensorflow tools2. Also, we used the POS
tagger and lemmatization algorithms implemented in
NLTK3, as well as the Doc2Vec implementation of
Gensim4.

For both case studies, the tests were carried out on
a server with 96 cores, 128 GB of RAM, 1 TB of hard
disk, running CentOS 7 64-bit. Details about the used
corpora and the test setup are next described.

In both cases, we transformed the test corpora into
images of size 20 × 20 pixels by training its cor-
responding SOM networks and projecting the three
document feature vectors. All these SOM models
were trained with a learning rate of 0.01 and 1000

1keras.io [All webpages were visited on 10/30/2021]
2www.tensorflow.org
3www.nltk.org
4radimrehurek.com/gensim/models/doc2vec.html

www.tensorflow.org
radimrehurek.com/gensim/models/doc2vec.html
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Fig. 6. Examples of the spectra obtained for three books, each row corresponds to a book and each column to its corresponding lexical,
syntactic and semantic component.

epochs each. We used Euclidean distance to obtain the
spectra from the SOM models in which case we set the
parameter p = 2 for Equation 2. Also, the Doc2Vec
models were trained to obtain vectors of size 100 by
using windows of 5 words for both the syntactic and
semantic components. The longest time registered to
obtain the spectral representations of the documents
was for case study 2 which took approximately 4050
seconds.

4.1. Case study 1: text classification

For this problem, we manually acquired books
from the Project Gutenberg5 to build the corpus. This
corpus is made up of a total of 200 documents, as
class label we considered the literary genre. The class

5www.gutenberg.org

labels collected were distributed as 48 Crime Fic-
tion, 32 Demonology, 32 Horror Tales, 64 Humorous
Stories, and 24 Western Stories documents.

Due to a text is mapped to a image (input matrix),
we resort to a convolutional neural network as clas-
sification model with the following parameters in its
architecture:

– A 1st convolution layer with 16 filters with size
3x3 pixels, 1x1 strides, and 0 pixels padding

– A ReLU activation function
– A max pooling layer of 2x2 pixels, 2x2 strides,

and 0 pixels padding
– A 2nd convolution layer with 32 filters with size

3x3 pixels, 1x1 strides, and 0 pixels padding
– A ReLU activation function
– A max pooling layer of 2x2 pixels, 2x2 strides,

and 0 pixels padding

www.gutenberg.org
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Table 1
Mean and standard deviation of accuracy for training and

validation sets in text classification. By using all components of
text (Full) better results were achieved

Used components Training set Validation set
μ σ μ σ

Full 0.8706 0.0371 0.5325 0.0765
Lexical-Syntactic 0.7121 0.0376 0.4912 0.0687
Lexical-Semantic 0.8045 0.0402 0.5020 0.0707
Syntactic-Semantic 0.8579 0.0413 0.4820 0.0716
Lexical 0.4654 0.0270 0.4504 0.0626
Syntactic 0.6701 0.0495 0.4772 0.0703
Semantic 0.8067 0.0574 0.4926 0.0748

– A 3rd convolution layer with 64 filters with size
3x3 pixels, 1x1 strides, and 0 pixels padding

– A ReLU activation function
– A flatten layer
– A fully connected layer with 128 neurons
– A ReLU activation function
– A dropout with a probability of 0.4
– A fully connected layer with 6 neurons one per

class in the test corpus
– A softmax output layer to transform the output

into a probability distribution of getting a class

For training, a total of 100 iterations of 150 epochs
each were performed by using our representation pro-
posal. Likewise, we applied the k-fold strategy with
k = 5 to have 80% of the data as a training set, and
20% as a validation set for each series of experiments.
We computed the accuracy as metric to guide the
model during the training process for a better clas-
sification. A better classification model or network
architecture could be used in this case, but this is out
of the scope of this work.

In the same way, to determine if by using all the
components of text in our approach gave better results
rather than using combinations of them. This series of
experiments were repeated taking as input the spectra
of three components in a single image, two compo-
nents, and a single component.

Given the number of executions per experiment
series, and following the central limit theorem, we
assumed our results fit a normal distribution. Then,
the parameters of results per combination of compo-
nent spectra for the training and validation are shown
in Table 1, where the better results were obtained
by using all three text components as a whole. Full
means we used the three components together.

We conducted a t-test to determine if there are sig-
nificant differences between the performance of using
all components of text and the performance exhibited
by using them with one or two them.

Table 2
t-test results over the classification results. In all cases the p-value

< .05, which reflects that there is a significant difference of
accuracy between using all components of text and using one or

two of them. Confidence intervals of the difference between
means also reflect a positive difference in all cases showing also
that higher accuracy values are reached by using all components

simultaneously

Component
comparison

Training set Validation set
p-val CI 95% p-val CI 95%

Full vs. Lexical <.001 [0.4, 0.41] <.001 [0.04, 0.06]
Full vs. Syntactic <.001 [0.2, 0.21] <.001 [0.02, 0.03]
Full vs. Semantic <.001 [0.06, 0.07] .042 [0.0, 0.02]
Full vs.
Lexical-Syntactic

<.001 [0.15, 0.16] .014 [0.0, 0.02]

Full vs.
Lexical-Semantic

<.001 [0.06, 0.07] <.001 [0.02, 0.04]

Full vs. Syntactic-
Semantic

<.001 [0.01, 0.02] <.001 [0.01, 0.03]

Let μs and μk be the average performance of using
all the components in a single image and the kth

benchmark combination respectively. The hypothesis
to be contrasted were:

H0 : μs − μk = 0

H1 : |μs − μk| > 0

We defined a significance level of 0.05. The values
of μs and μk were defined in terms of the accuracy
from experiments.

The results of these hypothesis tests are shown in
Table 2.

These tests demonstrated that there is a significant
difference on accuracy values between using all com-
ponents of text and using combinations of two or
one of them since in all cases p-value < .05. Also,
it is worth to mention that in all cases the confidence
interval of the difference between means is positive,
which reflects that using all components of text is
statistically better than using one or two of them.
Additional result analyses were performed where we
also included some more classification metrics and
distribution analysis, these results can be seen in an
additional web repository6.

4.2. Case study 2: Complexity reading score
prediction

In this scenario, we used the CommonLit Read-
ability Prize corpus obtained from the competition
website7. This corpus was used to determine if
a machine learning algorithm can determine the

6https://github.com/ctvdata/textrespresentation
7www.kaggle.com/c/commonlitreadabilityprize

https://github.com/ctvdata/textrespresentation
www.kaggle.com/c/commonlitreadabilityprize
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reading level of several text passages from books for
grades 3-13 classroom use. One of the main goals
in this competition was to incorporate cohesion and
semantics in the trained model, which fits our point of
view from our text representation proposal. This cor-
pus is composed of 2834 text passages, where each
one is associated with a complexity reading score
determined by CommonLit8 and the Georgia State
University. The scores in this corpus are in the inter-
val [−3.7, 1.7], where the higher the score, the easier
the passage can be read. Our interest on this problem
was not to win the competition but to determine if
better results are achieved by using the proposed text
representation, with all components of text.

In this case, we resort to a neural network model
for making regressions of complexity scores given
a text passage encoded according our proposal. The
used architecture was a multilayer perceptron net-
work with the following definition:

– A flatten layer to turn the input matrix into a
vector

– A fully connected layer with 600 neurons
– A ReLU activation function
– A dropout with a probability of 0.2
– An output fully connected layer with a single

neuron to get a score y ∈ R, which determines
the ease of reading for the text passage

The training consisted on a total of 50 iterations
with 100 epochs each. As in the previous case study,
we used the k-fold strategy with a value of k = 5 to
obtain an 80% of the corpus as a training set and 20%
as a validation set for each series of experiments. In
this case study, we used the Root Mean Squared Error
(RMSE) as metric to guide the model in the learning
process, where a lower value of RMSE reflects a bet-
ter fit of the model to the data. As in the previous case
study, a better regression model or architecture could
be used, but this is also out of the scope of this work.
Also, we repeated each series of experiments by using
all spectra of the components of text in the documents
in a single representation and combinations of one or
two of them.

By assuming normality in our results, the results
of these series of experiments are shown in Table 3.
Here, the best outcomes are achieved once again by
using all components of text (Full) in both training
and validation sets.

Also the statistical significance was computed for
these results, a t-test was conducted between the

8www.commonlit.org

Table 3
Mean and standard deviation of RMSE for training and validation
sets in text reading score prediction. By using all components of

text (Full) better results were achieved

Used component Training set Validation set
μ σ μ σ

Full 0.8714 0.0094 0.8758 0.0287
Lexical-Syntactic 0.9182 0.0078 0.9179 0.0269
Lexical-Semantic 0.8863 0.0081 0.8849 0.0252
Syntactic-Semantic 0.9062 0.0076 0.9199 0.0252
Lexical 0.9613 0.0070 0.9552 0.0252
Syntactic 0.9732 0.0061 0.9812 0.0231
Semantic 0.9301 0.0071 0.9386 0.0247

Table 4
t-test results over the reading score prediction results. In all cases

the p-value < .05, which reflects that there is a significant
difference on RMSE between using all components of text and
using combinations of one or two of them. Confidence intervals

of the difference between means also reflect a negative difference
in all cases, showing also that lower RMSE values are reached by

using all components simultaneously

Component
comparison

Training set Validation set

p-val CI 95% p-val CI 95%

Full vs. Lexical <.001 [-0.09, -0.09] <.001 [-0.08, -0.07]
Full vs. Syntactic <.001 [-0.1, -0.1] <.001 [-0.11, -0.1]
Full vs. Semantic <.001 [-0.06, -0.06] <.001 [-0.07, -0.06]
Full vs.
Lexical-Syntactic

<.001 [-0.05, -0.05] <.001 [-0.05, -0.04]

Full vs.
Lexical-Semantic

<.001 [-0.02, -0.01] <.001 [-0.01, -0.0]

Full vs. Syntactic-
Semantic

<.001 [-0.04, -0.03] <.001 [-0.05, -0.04]

results of using the three components and combina-
tions of one or two of them. In this case, the null
and alternative hypotheses were established in sim-
ilar manner as in the previous case study. Table 4
shows the obtained results of the tests.

Since the p-value < .05 in all cases, we demon-
strated that there is a significant difference between
using the spectra of all components simultaneously
rather than using one or two of them for this case
study. By taking into account that a lower value of
RMSE reflects a better fit of the model, we can state
that the confidence intervals between the means also
reflect this enhancement by showing negative values
in all cases. Additional results analysis were per-
formed where we also included some more regression
metrics and distribution analysis. These results can
also be reached in the web repository9.

9https://github.com/ctvdata/textrespresentation

www.commonlit.org
https://github.com/ctvdata/textrespresentation
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5. Conclusions

The use of machine learning algorithms in text
analysis has been beneficial in many scenarios.
Although traditional text representations (binary, bag
of words, etc.) have proved to produce good results,
few years ago, new vector text representations have
outperformed traditional ones. Most of the machine
learning methods rely on the use of vectors repre-
sentation to abstract text into a numerical form they
can manipulate to find hidden patterns in text. In this
sense, a text representation must abstract relevant fea-
tures about the information in text to achieve good
learning results. Commonly, these newer proposals
focus on semantic information.

In this work we proposed a text representation inte-
grating the spectra of all components of text (lexical,
syntactic, and semantic). Our hypothesis is that with
this representation is possible to abstract the content
of text for learning algorithms. We assume the con-
tent of text is rich on language variety phenomena
over types, sources, and writing styles, which can be
captured into a single representation.

To demonstrate the goodness of our proposal, this
was applied for text classification and complexity
reading score prediction tasks. In the experiments
different combinations of components of text were
tested. Over these results statistical significance were
computed, demonstrating the proposed text represen-
tation is suitable for those tasks. From these experi-
ments series our main intention was to demonstrate
that our proposal is feasible from a computational
perspective. We consider as future work over this pro-
posal exploring the goodness of having the text com-
ponents in isolation by treating these content spectra
with image analysis techniques (e.g. image segmenta-
tion, pixel detection, pixel correction, etc.) to ground
this concept into a linguistic perspective. We consider
also, integrating other types of text representations
from the state of the art to our proposal by consoli-
dating it as a multimodal representation in order to
verify if the same improvement behavior showed in
this work is again fulfilled (e.g. TF-IDF, probabilistic
representations, or BERT-based embeddings).
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