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Abstract. A common task in data analysis is to find the appropriate data sample whose properties allow us to infer the parame-
ters and behavior of the data population. In data mining this task makes sense since usually the population is significantly huge,
and thus it is required (for practical reasons) to obtain a subset that preserves its properties. In this regard, statistics offers some
sampling techniques usually based on asymptotic results from the Central Limit Theorem. The effectiveness of such ways is
bounded by several considerations as the sampling strategy (simple with or without replacement, stratified, cluster-based, etc.),
the size of the population and the dimensionality of the space of the data. Due to these considerations alternative proposals
are necessary. We propose a method based on a measure of information in terms of Shannon’s Entropy. Our idea is to find the
optimal sample whose information is as similar as possible to the information of the population, subject to several constraints.
Finding such sample represents a hard optimization problem whose feasible space disallows the use of traditional optimization
techniques. To solve it, we resort to a breed of Genetic Algorithm called Eclectic Genetic Algorithm. We test our method with
synthetic datasets; the results show that our method is suitable. For completeness, we used several datasets from real problems;
the results confirm the effectiveness of our proposal and allow us to visualize different applications. Finally, we establish a
baseline based on selection instance methods as a point reference to measure the effectiveness of our method.

Keywords: Data reduction, sampling data, instance selection, genetic algorithms, Shannon’s Entropy

1. Introduction

A first approach to data reduction is the sampling. The goal of sampling is to choose a representative
subset S' from a set called population denoted by P. One way in which S may be obtained is by a
random process where each element in P has an equal probability of being selected (simple sampling).
When this process allows us to choose an element from P more than once, it is called sampling with
replacement [1], otherwise it is called sampling without replacement [2]. Alternative ways to obtain .S
are: systematic sampling [3], stratified sampling and cluster sampling [4]. Regardless of the sampling
strategy, an important concern is how to determine the cardinality or size of S. Usually this value is
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Fig. 1. Standard error in function of the sample size.

determined resorting to asymptotical results from the Central Limit Theorem (CLT) [S5]. Assuming a
sample S; of size n drawn from P with mean pg., let X be a set of k¥ means ug, of the form:

X = [:U’Sn:uSza""MSk] (1)
From CLT, it is said that there is a relationship between the mean of X denoted as 1 ¢ and the mean of
the population P denoted as p, such relationship is given by:

px ™ p )

Likewise, it is said that there is a relationship between the deviation of X denoted as o '+ and the standard
deviation of the population o, such relationship is given by:

ﬁ, sampling with replacement
X =\ o [N-—n : > )
NAREE sampling without replacement

where N is the cardinality of the set P. Since o ¢ represents an error measure (usually called standard
error) of the samples S;, its value must be as small as possible. To satisfy this condition, an optimal
value of n must be found. We illustrate this fact in Fig. 1 with a synthetic dataset in ® of size 6000.
Every point is the standard error obtained with different values of n assuming that the sampling strategy
is with replacement. We can see that the value of n that minimizes the standard error is the closest to the
population size. Obviously, for practical purposes, such value is unsuitable.

From Eq. (3) the size of a sample (with replacement) can be written as:

4

Typically the value of o is defined in a discretionary way and represents the permissible error of the
sampling process. This fact implies the following remarks:
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Given the asymptotic nature of the Eqs (3) and (4), the value of n is not always appropriate. From

our example (see Fig. 1), if we assume that o ¢ = 0.05, the value of n will be greater than the size

or cardinality of P. So we are facing a problem which involves to find the break-even point between

nand 0.

— The result in Eq. (3) depends on the assumption that the elements from P are chosen by a simple
random sampling with replacement. Another sampling strategy does not guarantee that such result
is met.

— A generalization of the above asymptotic relationships to data in a multidimensional space may be
computationally complex and even unfeasible in some cases.

— In many approaches of Data Mining (DM) and Machine Learning (ML) the task of finding the

optimal sample goes beyond suggesting an adequately value of n in terms of CLT. This value

should be based on the data properties rather than asymptotic assumptions.

1.1. A new approach

There are many ways of picking n elements from P. The optimal way is one in which the obtained
sample .S is as “similar” as possible to P in terms of those properties of P that are preserved by S.
Specifically, we hypothesize that the optimal S is one sample of size n in which its information is as
similar as possible to the information of P. To measure the information, we can resort to Shannon’s
Entropy [6] (see Subsection 3).

Given that n € 1,2, ...N, the problem of finding the global optimal sample S* implies to explore a
huge search space whose size is given by:

N

N /N N N
Z<n>_zn!(N—n)!_2 1 )
n=1 =1

This expression represents the number of samples, each of size n, that can be formed from P (whose
size is V). For example, given P with N = 50, there are 1125899906842620 different samples of size
n. It gives us an idea of the huge feasible space of the problem.

For obvious reasons, we want that the value of n is as small as possible. However, the problem goes
beyond finding the minimal value of n. A same value of n can define a wide set of ways (exactly
(]T\L[ )) to obtain subsets from P, some which might not meet conditions or desired properties relative to
mentioned P. Specifically, in this work, we consider that an appropriate subset is one where both its size
is minimum and its information (in term of Shannon’s Entropy) relative to P is as similar as possible.
This poses an optimization problem with a huge feasible space. It requires to resort to a method that
allows us to explore such space efficiently.

Among the many methods that have arisen, we can mention tabu search [7], simulated annealing [8],
ant colony optimization [9], particle swarm optimization [10] and evolutionary computation [11]. Fur-
thermore, among the many variations of evolutionary computation, we find evolutionary strategies [12],
evolutionary programming [13], genetic programming [14] and genetic algorithms (GAs) [15]. All of
these methods are used to find approximate solutions for complex optimization problems. It was proven
that an elitist GA always converges to the global optimum [16]. Such a convergence, however, is not
bounded in time, and the selection of the GA variation with the best dynamic behavior is very conve-
nient. In this regard, we rely on the conclusions of previous analyses, which showed that a breed of
GA, called the Eclectic Genetic Algorithm (EGA), achieves the best relative performance [17,18]. In
Appendix A, the interested reader can find important details about EGA.
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Having determined a measure of information as criterion to find the most representative sample S*
drawn from P; and chosen the appropriate method to explore the wide search space, in the following
sections, we present the details of our proposal, but not before presenting the related works.

1.2. Related works

The problem of finding an appropriate sample, can have two possible scenarios:

— One where the parameters and behavior of PP are unknown and these must be inferred from a limited
set of observations .S.

— Another where there is a wide set of observations P, but due to practical reasons, it is required to
obtain a subset .S whose parameters and behavior are as similar as those of P.

The first scenario is common in those contexts in which the determination of the parameters of P
may be impractical or unfeasible. For example, in many medical studies where the data involve patients
with a disease or in those surveys about the political preferences of the inhabitants of a country. In
these cases, usually the sampling is carried out based on the asymptotical results from the CLT. Since
the parameters of P are unknown, the sampling may include several assumptions about them. Given
the disadvantages of this approach, in particular contexts the need for finding other sampling ways has
arisen. For instance, in [19] a method is presented for determining the appropriate sample size for a
series of screening trials to identify promising new therapeutic agents. In [20] a work motivated by
a specific problem in microarray experiments is shown; here the problem of choice of sample size is
approached as part of a decision problem, involving both the sample size decision before carrying out
the experiment and the later decision about the multiple comparisons once the data have been collected.
In [21] a method that allows a relatively simple calculation of the required number of subjects in a
reliability study is presented.

The second scenario is when given a large set P of observations about a phenomenon, it is required to
obtain a subset S to infer its behavior model, since for practical reasons (often time or space) P cannot
be used. This situation is common in Data Mining (DM) or Machine Learning (ML) approaches where
the performance is compulsory. Often this problem is called instance selection [22]. In this regard sev-
eral works have been published. Many of them have been focused on improving the performance of the
Nearest Neighbor classifier (NN), since it'is not suitable with very large datasets. Among these works,
we mention Condensed NN (CNN) [23], Edited NN (ENN) and Repeated Edited NN (RENN) [24],
Variable-kernel Similarity Metric (VSM) [25], Shrink and Growth [26]. These methods attempt to find
iteratively an appropriate subset S which adequately classifies the remaining instances of P. Other ap-
proaches aim to remove instances systematically from P depending on the ability of the remaining
instances to be well classified. This is the case of DROP [27] and the so-called Stratified Ordered Selec-
tion (SOS) [28]. Considering the instance selection as a hard search problem, some methods based on
heuristics have arisen, for instance in [29] a method based on Random Mutation Hill Climbing RMHC
is proposed, in [30] and [31] two approaches based on GAs are shown. Recently have arisen approaches
based on the rough sets theory [32]. Among these approaches, we can mention the fuzzy-rough instance
selection (FRIS) [33] and fuzzy-rough prototype selection method (FRPS) [34]. FRIS is based on the
removal of instances that negatively affect the fuzzy positive region; instances are removed until there is
no uncertainty among them. In FRPS the instances are ordered according to a measure based on fuzzy
rough set theory to evaluate the lack of predictive ability of them. The instances for which the value
exceeds a certain threshold are removed from the training set. The remain instances are high-quality
instances to improve NN classification. We use the above methods to establish a baseline in order to
compare the effectiveness of our proposal relative to it.
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Clearly our proposal deals with the second scenario. In this regard, typically the cited methods have
focused on finding the set S* that optimizes the training process in classification tasks. Our proposal
goes beyond, we want to find the optimal S* regardless of the problem. It means that such method has
potential applications both supervised and non-supervised problems, where the use of a limited dataset
may be required. Like some cited methods, our proposal tackles the problem as an optimization problem.
It differs from them in that the objective function is focus on minimizing the cardinality of the set S in
such a way that, it preserves the information conveyed by P, instead of optimizing measures about the
“classification ability” of S. As mentioned the measure of information is based on entropy.

To present our proposal, the rest of this work has been organized as follows: In Section 2 we show
the background to guide the discussion about it. We show how to measure the information of the data
based on Shannon’s Entropy and how to extend such measure to data in a multidimensional space. In
Section 3, we show important details as the objective function and the encoding to solve it through EGA.
In Section 4, we show the experimental methodology and its results. Finally, we present the conclusions
and infer several applications.

2. Background

In what follows, we provide the conceptual background which involves important details about how
to measure the information of a dataset treated as a random variable. We introduce the entropy concept
assuming an univariate random variable. Subsequently, we present a proposal to extend such concept to
multivariate case.

2.1. Measuring the information of a dataset

The so-called entropy appeals to an evaluation of the information content of an univariate random
variable Y with possible values y1, Y2, y,. From a statistical viewpoint, the information of the event
(Y = y;) or simply p(y;) is inversely proportional to its likelihood. This information is denoted by
I(y;), which can be expressed as:

I(y;) = log <p(1yj>> (6)

From information theory, the entropy of Y is the expected value of I. It is given by:

Zp yj)log ( ) Zp y)log(p(y;)) (7

Typically, the log function may be taken to be l[ogs, and then, the entropy is expressed in bits; other-
wise, as In, in which case the entropy is in nats. We will use logo for the computations in this paper.

We can see that the entropy implies to determine the probabilities p(y;), for which, we need to know
the probability distribution function (PDF) of Y. Since usually such PDF is unknown, a statistical infer-
ence approach is typically required. We propose to infer the PDF through a non-parametric approach,
avoiding to make assumptions about a particular probability distribution (see Subsection 2.2). The term
non-parametric does not imply absence of parameters; the idea is to keep the number of them as weak
as possible. Non-parametric approaches can involve density functions, conditional density functions,
regression functions or quantile functions to find the most suitable distribution [35].
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So far, we have assumed that Y is an univariate random variable. However an important issue to
be considered is the multivariate case. When Y € RY, for d > 2, we have to determine p(Y = %)
that implies the joint probability p(y1, y2, ...yq). Evidently, when d increases such probability may be
intractable from computational view point. In Subsection 2.2, we present a promising approach to tackle
this problem.

Considering P and S as random variables, their expected values of information (in what follows
simply information) can be calculated from Eq. (7). We want to choose a sample S; of size n from P
such that:

|H(S:) - H(P)|
H(P)
where € is a parameter that represents the maximum permissible error between the information of P
and S;. Since two different PDFs can have the same entropy, the Eq. (8) does not guarantee that S;
preserves the properties (at least from statistic view point) of P. For this reason we include additional
constraints in order to assure that the distribution of S; is as similar as possible to the distribution of P
(see Subsection 3.1).

<€ 3)

2.2. Fitting distribution of Y

Since determining the probability p(vi1, ¥i2, ...yia) given a random variable Y € R? is imperative for
our purposes, in this section, we present a method to approximate such probability. As first approach,
we tackle the univariate case. Later we extend the ideas and results to multivariate case.

Given an univariate random variable Y (in what follows dataset), we can divide its space into a set of
quantiles. A quantile g; is an interval of the form ¢; = [y, ] where y and 7 are the lower and upper limit
of ¢; respectively. The quantile width denoted as A is given by:
_ |maz(Y) — min(Y)| ©)

m
where m is a prior value of the desired number of quantiles (see Section 2.3). The first quantile is defined
as a half-closed interval of the form:

A

@ = [min(Y),min(Y) + A) (10)
The subsequent quantiles can be defined as:
S Wie, Ui + A]if i =m
7= { [Ui_1,7;—1 + 4] otherwise (1D

where 7,_; is the upper limit of a previous quantile. In this case, p(Y = y) can be approximated by
the proportion of the elements that lie in the quantile to which y belongs. In Fig. 2 it illustrated a
possible division of the space of Y into quantiles. Note that the number of elements that lie in a quantile
determines its proportion, which can be an approximation to a probability value.

The above idea can be extended to higher dimensional data, in which case, a quantile will be a d-
dimensional partition of the data space. In this way, given a dataset Y € R with instances of the form
y = [y1,Y2, ..., yq], we can divide its space into a set of d-dimensional quantiles as it is illustrated in
Fig. 3 for d = 3.

A d-dimensional quantile is composed by a set of intervals which determine the upper and lower limit
for each dimension. Such definition is expressed as:

qi = HQH@ML [gmayﬂL cey [gi(pgid“ (12)
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Fig. 3. Space discretization for a multivariate variable.

where y. , and 7, ;. are the lower and upper limit of ¢; in the k" dimension. The width of each interval
is given by:

_ |max(Yy) — min(Yy)]

Ak (13)

where Y}, is the dataset in the k' dimension. Based on the above, we can generalize the way to determine



810 E. Aldana-Bobadilla et al. / A novel data reduction method based on information theory and the EGA

the limits of a quantile when Y € R? as:

'WMWMmmWn+&JT
o= [min(Y2), min(Ys2) + Asg) (14)

min(Y,,), min(Yy) + An)

for the first quantile, and:
_ T
Wi—1),1Ua-1)1 + D1
4 . A
i—1),2: Y(i—1),2 T D2l ii—m
L [Yi—1),d: Yi—1)1 T Ll
¢ = (15)
g _ T

[Y(i—1)1:Yg—1)1 + L1)

[y(i_1)127 y(i_l))Q + AQ) otherWiSC

| W-1),a: Yi—1)1 T Lon)

for subsequent quantiles, where %(;_;);, is the upper limit of a previous quantile (¢ — 1) in the kth
dimension.

As univariate case, the PDF of Y is approximated by the proportion of the elements that lies in
each quantile. In general given a random variable of the form Y = [y1,y2,...,y4] the probabil-
ity p(y1,v2, ..., yq) is the density (in terms of the proportion) of the quantile g; to which the vector
[y1, Y2, ..., yq] belongs. Based on the above, now we can approximate the PDF of P and S in order to
determine their entropy.

2.3. Determining the number of quantiles

To determine the value of m (number of quantiles), typically, Sturges’ rule [36] and [37] is used.
There are other alternative rules which attempt to improve the performance of Sturges’s rule without a
normality assumption as Doane’s formula [38] and the Rice rule [39]. In this paper, we prefer the Rice
rule, which is to set the number of intervals to twice the cube root of the number of instances or obser-
vations. In the case of 1000 instances, the Rice rule yields 20 intervals instead of the 11 recommended
by Sturges’ rule.

3. Proposal

Having defined the way to measure the information conveyed by P and .9, in the following subsections,
we present important details of our proposal.

3.1. Defining the objective function

We want to find the minimal value of n that allows us to obtain a sample S; of size n drawn from P.
In this regard, the objective function can be defined as:
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Fig. 4. Encoding of the problem.
Minimize: f(n) = % (16)

The value of the objective function tends to 1 when the value of s close to N (recall that [V is the size
of P). Evidently such function is not enough, the sample S; (of size n) must also satisfy the following
constraints:

1. The error between the information of P and S; must be less than or equals to € (see Eq. (8)).

2. As mentioned, the quantiles are partitions of the space of a dataset. Since S; and P are datasets
such that S; C P, the set of quantiles can be unique to both P and .S;. We want that given P and .S;
the proportion of elements of P that lie in the quantile gy, is as similar as possible to the proportion
of elements of .S; that lie in this same quantile.

Thus, the objective function is given by:
Minimize: f(n) = &

subject to: (17
H(S:)—H(P
|H ( I} A Pl « ¢

3 lae(Si) — q(P)| <6
ne[2,N)

where g1, (S) and g, (P) are the proportion of elements of S and P that belong to k' quantile respec-
tively. We define the difference between these proportions as an error measure and establish that its
average value must be less than or equals to . In this work we set € = 0.05 and § = 0.01, these values
allow us to obtain a fast convergence to the optimal solution of Eq. (17).

3.2. Encoding the objective function

EGA proposes w candidate solutions to obtain the best w samples .S; drawn from P. We encode a
candidate as a binary string of length 64. The 32 most significant bits encode an unsigned integer that
corresponds to the value of n. The subsequent bits encode a unsigned integer number that corresponds
to the random seed with which the sample .S; is chosen from P. In Fig. 4 this encoding is illustrated.

For each candidate a fitness value is calculated based on the objective function (see Eq. (17)). The
fitness of those candidates that do not satisfy the constraints is punished through a penalty function (see
Subsection 3.3). Evolution takes place after the repeated application of genetic operators of EGA. When
the maximum number of iterations is reached, we have w candidates which encode the best values (n
and a random seed) to obtain S;. The optimal solution will be the top 1 candidate. Important details
about this process are shown in Subsection 3.4.
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3.3. Constraints handling strategy

We are facing a constrained optimization problem, to solve it, the most common way is resorting to a
penalty function [40]. In this approach, the objective function in Eq. (17) can be transformed as follows:

(18)

There are many variations of penalty functions. Based on the results of a comprehensive analysis re-
ported in [41], we use the method that exhibited the best performance, where the objective function
f(n) is handled as follows:

f(n) _ {[K - Zf:l %] if s #p (19)

f(n) otherwise

f(n) = f(n) if n 1is feasible solution
= f(n) + penalty(n) otherwise

where K is a large constant [O(10%)], p is the number of constraints and s is the number of these
which have been satisfied. The value of K induces a strictly separation of those individuals that satisfy
1,2, ..., p constraints. This separation allows favoring those solutions that satisfy the largest number of
such constraints.

3.4. Searching the optimal sample

When the evolutionary process of EGA is finished, the set of candidate solutions contains the fittest
candidate whose genome encodes the optimal size and a random seed denoted as n* and r respectively.
It allows us to find the optimal sample S* of size n* drawn from P. In what follows, we describe this
process:

EGA starts with a random set C' of candidate solutions in accordance to the problem encoding. The
cardinality of C' is denoted as ©. For each candidate ¢; € C, its genome is decoded to obtain a value of
n and r. With these values, a random sample S; of size n from P is obtained using as random seed 7.
Given S;, the fitness value of ¢; is determined based on objective function. If required the fitness values
of ¢; is penalized (see Eq. (19)). Subsequently, the set C' is sorted in ascending order, based on fitness
values.

The evolutionary process of EGA is based on the premise of elitism. It means that the best candidate
solutions of every iteration must be preserved. Based on the above, in each iteration, EGA duplicates
the set C' in order to apply the genetic operators (crossover and mutation) to a copy of C. The duplicate
C (now with size 20) is evaluated and sorted in ascending order, based on the fitness values of each
¢;. Later, the worst © individuals are removed to obtain a set C' with the © fittest candidates. The
evolutionary process is repeated until convergence criteria are met (usually a given number of iterations).

As result of the above process, the top 1 candidate is selected from C'. It contains the best optimal way
(given by n and a random seed) to obtain S*. The described process is shown in Algorithm 3. A “generic
version” of EGA (independent of the problem) can be found in Appendix A.

3.5. Setting parameters

As mentioned e is the maximum permissible error between the information of .S relative to P. Mean-
while ¢ is the average error between the proportions of the quantiles given S relative to the proportions
of these quantiles given P. Since they represent the upper bound of error measures, we would like that
their value is as small as possible. For this reason, we decided to set ¢ = 0.05 and § = 0.01. It means
a ratio of loss information less than 5% and a ratio of “discrepancy” between the PDF of P and S less
than 1%.
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Algorithm 1: Searching the Optimal Sample

Data:
© = Number of candidate solutions
C = 0, set of candidate solutions
¢; =0, the ith candidate
f =0, fitness array of the candidates solutions
Result: The top 1 candidate which encodes the best optimal way to obtain S*
Generate a random set C' of candidate solutions.
C' = initialization(©);
Determine the fitness value of ¢; based on Eq. (17):
f = evaluate(C);
Sort candidates from best to worst based on their fitness:
sort(C, f);
while convergence criteria are not met do
duplicate(C);
bottom = 2 x O
fori =0 1t02*06do

Generate a random number R;

if R > p. then

| crossover(c;, chortom));

end
bottom = bottom-1
end
Mutate the population in b2m randomly selected bits:
mutate(C);
f = evaluate(C);
sort(C, f);

Eliminate the worst © individuals from C
C' = remove(C);

Return top(C)

end

The parameters associated to EGA are shown in Table 1. The value of them was determined experi-
mentally in a previous study (see [17]). This study showed that from statistical view point, EGA con-
verges to optimal solution around such values when the problems are demanding (those with non-convex
and multi-modal functions). Since the problem to be solved by EGA in this work lies in this category,
we consider such values appropriate. We found that they allow us to obtain good results regardless of

the dataset from which we want to obtain the optimal sample.

4. Results

We wanted to show some preliminary results as a first approach to the effectiveness of our method (see
Subsection 4.1). Subsequently, we statistically evaluated such effectiveness in two ways: a) the ratio of
data reduction (size reduction percentage of S* relative to P) and b) the sampling error (difference of

the statistical properties of S* relative to P) (see Subsection 4.2).
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Table 1
Parameters of evolutionary process
Parameter  Description Value
P. Crossover probability 0.90
P, Mutation probability 0.01
© Number of candidates 80
G Number of iterations 100

Often the datasets have hidden information which are not possible to be characterized through statis-
tical measures. We also wanted to guarantee that the subset S* preserves this information. We attempted
to measure the hidden information through the classification ability of S* relative to P. In this regard, we
used a suite of datasets that represent classification problems where the class label for each instance is
known. Usually these sets are called labeled dataset. Our hypothesis.is that given a large labeled dataset
P, we can find an optimal subset S} to train a classifier instead of using P;. The effectiveness in this
case is given by the percentage matching between the class labels found by a classifier trained with S}
and the class labels found by the same classifier trained with P; (see Subsection 4.3).

As mentioned in Subsection 1.2, recently have arisen approaches based on the rough sets theory as
fuzzy-rough prototype selection method (FRPS) and fuzzy-rough instance selection (FRIS) which re-
duce the number of instances or elements that must be selected from a dataset. For completeness, we use
these methods to establish a benchmark baseline in order to compare the effectiveness of our proposal.
The experimental process and results are described in Subsection 4.4.

4.1. Preliminary results

We executed preliminary experiments whose results allowed us to show that our method is promissory.
The datasets in such experiments are described as follows:

— Dataset D; of 10000 elements in a one-dimensional space drawn from a Gaussian distribution with
parameters ;4 = 10 and o = 2.

— Dataset Ds of 10000 elements in a.one-dimensional space drawn from a Poisson distribution with
parameter A = 3.

— Dataset D3 of 10000 elements in a one-dimensional space drawn from a Weibull distribution with
parameter A = 1 (scale) and k£ = 1.5 (shape).

— Dataset D4 of 10000 elements.in a bi-dimensional space drawn from a Gaussian distribution with
parameters ;i = [0.5,0.5] and ¢ = [1.0, 1.0].

— Dataset D5 of 100000 elements in bi-dimensional space that represent a sinusoidal function in the
into the interval [—27, 27].

Our hypothesis is that our method will find the optimal sample S* of these datasets, retaining their
statistical properties given by the PDF. In what follows some evidences are shown. In Figs 5, 6 and 7 we
can see that the PDF of the sample is similar to the PDF of the original dataset. Such PDF retains some
properties as unimodality, skewness and kurtosis.

In the case of the bi-dimensional dataset D,, the method found a sample S; with the following
parameters: i = [0.51,0.48] and & = [0.98,0.96]. We can see that such values are similar to those of
the original data (i = [0.5,0.5] and & = [1.0, 1.0]). For completeness in Fig. 8 the density plots of Dy
and S} are shown.

Since the distribution of the sinusoidal dataset (Ds) is not characterized by a theoretical PDF, we
decided to estimate its marginal distributions, and then we compared them against marginal distributions
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Fig. 6. Distribution of the dataset D5 and the optimal sample S5.

of Sf. In Figs 9 and 10 the marginal distributions of D5 and S in the abscissa (x) and ordinate (y) are
shown.

In the case of y the similarity between distributions is evident. However, the distributions in z show a
slight difference, for this reason, we wanted to analyze the data estimating the joint distribution, as it is
shown in Fig. 11. We can see that the properties of the distribution are preserved by the sample in spite
of there are marginal differences.

The above results show that the samples achieve to retain the information conveyed by the original data
and reduce significantly its size. However, these results are not enough to generalize this observation.
In the following subsection, we present an experimental methodology that allows us to generalize the
effectiveness of our proposal.
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Fig. 8. Distribution of the dataset D4 and S7.

4.2. Statistical performance

We evaluated the effectiveness in two ways: a) the ratio of data reduction and b) the sampling error.
In the first case, we resort to a measure from data compression: the so-called space saving metric
(SS) [42] which is a measure relative to the ratio between the size of a sample S; and P, given by:

SSzl—% (20)

A large value of S'S (closer to 1) implies better performance. We calculated such metric with a wide set
of experiments (about 5000) which included random datasets of size 1000, 5000, 10000 and 100000.
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Fig. 10. Marginal distribution of D5 and S5 in y.

The average result is shown in Table 2. For completeness, we show the confidence interval of the results
with a p-value of 0.05.

The experiments show that in average the sampling process allows us to reduce the size of the dataset
in more than 70%.

Secondly, we want also to show that the “reduced dataset” (5*) preserves the statistical properties of
the original dataset (P). Usually such properties may be characterized by two statistics: ¢ and 0. We
rely on them to define the following performance measures:

€TTOTN = Hﬁs* - ﬁPH (21)
errory = ||Gg- — ap||

where jig, dg+ and [ip, 0p are the mean vector and the standard deviation vector of S* and P re-
spectively. The terms error, and error, represent an Euclidean norm. Since there may be datasets
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Table 2
Data reduction effectiveness
SS
Average 0.7895
Standard deviation 0.3181
Lower limit 0.7806
Upper limit 0.7983
Confidence level 95%
Table 3
Sampling error characterized by error, and error,
errory, errory
Average 0.016 0.021
Standard deviation 0.00 0.031
Lower limit 0.00 0.031
Upper limit 0.00 0.031
Confidence level 95% 95%

1

(a) Joint distribution of Ds (b) Joint distribution of $¥ (n* = 642)

Fig. 11. Estimated joint distribution of Ds and S5 in y.

with different scales, the norms achieved with them may be non-comparable. To avoid this problem, we
scaled the data in P and S* between O and 1. Thus, a small value of error, and error, (closer to 0)
implies better performance. During the execution of the experiments to obtain the average value of 5SS,
the values of error,, and error, were also calculated which are shown in Table 3.

These results show that in general S* retains about 98% of the statistical properties of P (characterized
by u and o).

So far, we have shown that our method achieves to reduce the space of the dataset in more than 70%
and preserves its statistical properties. However, typically the datasets have hidden information whose
recognition through statistical measures is hard. We want to guarantee that the subset S* also preserves
this information. We discuss about this in the following subsection.
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Table 4
Properties of the selected datasets
Dataset’s name  Variables  Classes Size Missing values
Abalon 8 29 4,177 no
Cars 22 4 1,728 no
Census Income 14 2 32,561 yes
Hepatitis 20 2 155 yes
Yeast 10 8 1486 no
Table 5
Properties of the selected datasets
Dataset’s name Matching ratio SS
Abalon 0.88 0.63
Cars 0.89 0.71
Census Income 0.94 0.76
Hepatitis 0.87 0.61
Yeast 0.92 0.71
Average 0.90 0.68
Table 6
Sampling error characterized by error, and errors,
Method SS errory errory
Proposal 0.790 0.016 0.021
FRPS 0.937 0.247 0.238
FRIS 0.884 0.141 0.138

4.3. Preserving hidden information

In order to illustrate the effectiveness of our method to retain hidden information of a dataset when
this is sampled, we selected 5 datasets (Abalone [43], Cars [44], Census Income [45], Hepatitis [46] and
Yeast [47]) from the UCI Machine Learning repository whose properties are shown in Table 4. We chose
labeled datasets that represent classification problems. Selection criteria of these datasets was based on
the following features:

Multi-dimensionality.

Cardinality.

Complexity (non-linearly separable problems).
Categorical data.

Data with missing values.

Some of these features involve pre-processing tasks to guarantee the quality of a dataset. We applied
the following pre-processing techniques:

— Categorical variables were encoded using dummy binary variables [48].

— The datasets were scaled into [0, 1).

— To complete missing information, we interpolate the unknown values with natural splines (known
to minimize the curvature of the approximant) [49].

With these sets and resorting to a Bayesian Classifier (BC), we calculate the effectiveness as follows:
Given a labeled dataset P}, a subset without labels is obtained. This set is denoted as Pj.; which is
used to assess the strength and utility of the predictive relationship determined by BC. Done this, an
optimal sample S} is obtained from P, using our method. Based on this sample the training process of
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BC is performed. Later, the predictive process of BC is executed with P4 in order to obtain a label
vector Y;. Subsequently, the training process of BC is performed again, but this time with P. Then, the
predictive process of BC is executed with P in order to obtain another label vector Y5. Finally, based
on }71 and }7'2 a matching ratio is determined. This ratio allows us to measure the effectiveness of the S}
to train a classifier, relative to the entire dataset F;. The described process is shown in Algorithm 2.

Algorithm 2: Matching ratio as effectiveness to classification
Data:
P, = Labeled dataset
Piest = Test subset from P

;= Subset from P, obtained by our method.

Result: Matching ratio
Execute training process of BC with (57°):
bayesianClassifier(S] ),
Execute predictive process of BC with Pegy:
Y, = predict(S7);
Execute training process of BC with (F):
bayesianClassifier(P,);
Execute predictive process of BC with Pegy:
Yy = predict(S7);
Obtain matching ratio between }71 and }72:
ratio = ratio(§71,172);
Return (ratio)

Based on the above, we determined the effectiveness for each dataset in Table 4. The results are shown
in Table 5. For completeness we have included the index of data reduction S'S.

These results show that beside reducing the size of the data, our method also preserves hidden infor-
mation (one that cannot be characterized statistically) which is necessary to the classification process.
We can see that the effectiveness (given by matching ratio) is about 90%. It means that our method
achieved to obtain samples that allowed us to train a classifier as well as the original datasets. Also, it
was possible to reduce the size of such datasets by 68% (in average).

4.4. Benchmarking

As a first approach, we use a synthetic Gaussian dataset in *2 with N = 10000. In Fig. 12 are shown
the results obtained after executing FRPS given this dataset. We can see that this method achieves a
significant reduction of the number of instances. However, the marginal PDF of the remaining instances
does not correspond to the marginal PDF of the dataset. It means that the obtained sample does not
preserve the statistical properties of the original dataset.

Figure 13 shows the results obtained after executing FRIS. We can see a improvement, since the
method achieves to obtain a sample (larger than the obtained by FRPS) that preserves in some degree
the statistical properties of the dataset given its marginal PDFs.

In Fig. 14 we can see the results obtained by our proposal. We can see that it achieves a sample whose
marginal PDFs are more similar to marginal PDFs of the dataset, in contrast with the samples obtained
by FRPS and FRIS. It should be noted that the size of this sample is between 378 and 1885 (sizes sample
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obtained with FRPS and FRIS respectively). Based on the above, we can hypothesize that our method
allows us to obtain the sample with the optimal size subject to constraints that force the preservation of
statistical properties characterized by its PDFE.

Since the above results are not enough to ensure the effectiveness of our method (at least from the
statistical view point), we executed FRPS and FRIS with the same datasets used in Subsection 4.2, in
order to obtain the average values of the effectiveness measures S'S, error, and error,. The obtained
results are shown in Table 6.

We can see that the baseline methods achieved to reduce about 90% of the original dataset in contrast
with our method that achieved a reduction about 80% in average. However, the values of error, and
error, show that our method achieved to retain the statistical properties of the original dataset with
an error ratio about 1%. Meanwhile, the baseline methods achieved error ratios about 14% and 24%.
It means that a significant reduction of the sample size does not imply that this sample is optimal.
Our method allows us to find the sample with the minimal size bounded by its capability to retain the
statistical properties of the original data. In this regard, our method outperforms the effectiveness of the
baseline methods.

5. Conclusions

A new reduction data method based on the entropy has been defined in order to find a minimal sample
that preserves the information of a large dataset. Finding the optimal sample involves an optimization
problem that requires an efficient method to explore the huge feasible space. We use EGA as the best
alternative. A first approach allows us to verify that our method is able to find a sample from a dataset
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that retains the original properties characterized by the probability distribution. Based on these results a
wide set of experiments on synthetic datasets was executed. We found that in general, the sample retains
about 98% of the statistical properties of P and its size is about 30% of the original data size. Since
often the datasets have hidden information which are not possible to be characterized through statistical
measures. We wanted to ensure that the reduced dataset retains such information. We measured this
information through the so-called classification ability of the sample relative to the original dataset. We
used a suite of datasets that represent classification problems, in order to show that our method obtains
the optimal sample that are able to train BC as well as the original data. Based on the results, we can
tackle many applications in DM and ML that require data reduction. As future work, we want to show
that our method can be applied to those problems related to feature selection, where removing redundant
attributes is compulsory.

Appendix A: Eclectic genetic algorithm

For those familiar with the methodology of genetic algorithms it should come as no surprise that
a number of questions relative to the best operation of the algorithm immediately arose. The Simple
Genetic Algorithm [50] frequently mentioned in the literature leaves open the optimal values of, at least,
the following parameters:

— Probability of crossover (F,).
— Probability of mutation (FP,,).
— Population size.

Additionally, premature and/or slow convergence are also of prime importance. For this EGA incorpo-
rates the following:

1. Full elitism over the last set of © candidate solutions. Given that, by iteration ¢, the number of
solutions tested is ©t, the set of candidates in such generation consists of the best © solutions
(individuals).

2. Deterministic selection as opposed to the traditional proportional selection operator. Such scheme
emphasizes genetic variety by imposing a strategy that enforces crossover of predefined individu-
als. After sorting the individual’s fitness from better to worse, the i’ individual is combined with
the (© — i)' individual.

3. Crossover is performed with a probability P.. Annular crossover makes this operation position
independent. Annular crossover allows for unbiased building block search, a central feature to GA’s
strength. Two randomly selected individuals are represented as two rings (the parent individuals).
Semi-rings of equal size are selected and interchanged to yield a set of offspring. Each parent
contributes the same amount of information to their descendants.

4. Mutation is performed with probability F,,,. Mutation is uniform and, thus, is kept at very low lev-
els. For efficiency purposes, we do not work with mutation probabilities for every independent bit.
Rather, we work with the expected number of mutations which, statistically is equivalent to calcu-
lating mutation probabilities for every bit. Hence, the expected number of mutations is calculated
from ¢ * © x P, , where / is the length of the genome in bits and © is the number of individuals in
the population.
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Algorithm 3: Eclectic Genetic Algorithm

Data:
© = Number of candidate solutions
C' = (), set of candidate solutions
¢; = 0, the i'" candidate
f =0, fitness array of the candidates solutions
P, = Crossover probability
P,, = Mutation probability
{ = Length of the Individual
b2m = £ x © x P,,, number of bits to mutate
Result: The top 1 candidate which encodes the best optimal solution of a given problem
Generate a random set C' of candidate solutions whose length is /.
C = initialization(0, ?);
Determine the fitness for each ¢; € C' based on objective function:
f = evaluate(C);
Sort candidates from best to worst based on their fitness:
sort(C, f);
while convergence criteria are not met do
duplicate(C);
bottom = 2 x O,
fori =012+0do

Generate a random number R;

if R > P_ then

| crossover(c;, chottom));

end
bottom = bottom — 1
end
Mutate the population in b2m randomly selected bits:
mutate(C),
f = evaluate(C);
sort(C, f);

Eliminate the worst © individuals from C
C = remove(C);

Return top 1 from C'

end
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